Suppr超能文献

In vivo insulin mimetic effects of pV compounds: role for tissue targeting in determining potency.

作者信息

Bevan A P, Burgess J W, Yale J F, Drake P G, Lachance D, Baquiran G, Shaver A, Posner B I

机构信息

Polypeptide Hormone Laboratory, McGill Nutrition and Food Science Centre, Montreal, Quebec, Canada.

出版信息

Am J Physiol. 1995 Jan;268(1 Pt 1):E60-6. doi: 10.1152/ajpendo.1995.268.1.E60.

Abstract

Peroxovanadium (pV) compounds activate the insulin receptor kinase in hepatocytes and inhibit the dephosphorylation of insulin receptors in hepatic endosomes with highly correlated potencies (Posner, B. I., R. Faure, J. W. Burgess, A. P. Bevan, D. Lachance, G. Zhang-Sun, J. B. Ng, D. A. Hall, B. S. Lum, and A. Shaver J. Biol. Chem. 269: 4596-4604, 1994). After intravenous administration, K2[VO(O2)2(picolinato)].2H2O [bpV(pic)], VO(O2) (picolinato) (H2O)2 [mpV(pic)], K[VO(O2)2(picolinato)].3H2O [bpV(phen)], and K[VO(O2)2(4,7-dimethyl-1,10-phenanthroline)].1/2H2O [bpV(Me2phen)] produced 50% of their maximal hypoglycemic effect at doses of 0.04, 0.04, 0.32, and 0.65 mumol/100 g body wt, respectively. In contrast, their potencies as inhibitors of dephosphorylation were bpV(pic) = bpV(phen) > mpV(pic) = bpV(Me2phen). bpV(pic) stimulated [14C]glucose incorporation into rat diaphragm glycogen in vivo, and its effect was dose dependent, synergistic with insulin, and evident in other skeletal muscles. In contrast, bpV(phen) displayed no effect on glycogen synthesis in skeletal muscle. mpV(pic) stimulated and bpV(Me2phen) had no effect on glycogen synthesis in the diaphragm. bpV(pic) augmented rat diaphragm insulin receptor kinase 2.2-fold with a time-integrated response 70% that of insulin. In contrast, the effect of bpV(phen) was delayed and much reduced. Thus, the in vivo potencies of pV compounds reflect differing capacities to act on skeletal muscle. The ancillary ligand within the pV complex may target one tissue in preference to another.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验