Bhanot O S, Solomon J J
Department of Environmental Medicine, New York University Medical Center, New York.
Environ Health Perspect. 1994 Sep;102 Suppl 3(Suppl 3):81-90. doi: 10.1289/ehp.94102s381.
A variety of alkylating mutagens and carcinogens produce pyrimidine adducts in DNA that block DNA synthesis in vitro. Since DNA synthesis past the lesion is a necessary step to produce mutations, we investigated the role of the mutagenic metal ion Mn++ in facilitating DNA synthesis past alkylpyrimidines. In the presence of the natural metal activator Mg++, N3-ethyldeoxythymidine (N3-Et-dT) and O2-ethyldeoxythymidine (O2-Et-dT), present at a single site in DNA, blocked in vitro DNA synthesis 3' to the lesion and after incorporating dA opposite each lesion. The presence of Mn++ permitted postlesion synthesis with dT misincorporated opposite N3-Et-dT and O2-Et-dT, implicating these lesions in A.T-->T.A transversion mutagenesis. The DNA synthesis block by O4-ethyldeoxythymidine (O4-Et-dT) in the presence of Mg++ was partial and was also removed by Mn++. Consistent with in vivo studies, dG was incorporated opposite O4-Et-dT during postlesion synthesis, leading to A.T-->G.C transition mutagenesis. We also have discovered a new class of DNA adducts, N3-hydroxyalkyldeoxyuridine (3-HA-dU) lesions, which are produced by mutagenic and carcinogenic aliphatic epoxides. 3-HA-dU is formed after initial alkylation at the N3 position of dC followed by a rapid hydrolytic deamination. As observed with the analogous mutagenic N3-Et-dT, the ethylene oxide-induced 3-hydroxyethyldeoxyuridine (3-HE-dU) blocked in vitro DNA synthesis, which could be by-passed in the presence of Mn++. The nucleotide incorporated opposite 3-HE-dU during postlesion synthesis is being identified. These studies suggest a role for Mn++ in mediating mutagenic and carcinogenic effects of environmentally important ethylating agents and aliphatic epoxides.
多种烷基化诱变剂和致癌物会在DNA中产生嘧啶加合物,从而在体外阻断DNA合成。由于越过损伤部位的DNA合成是产生突变的必要步骤,我们研究了诱变金属离子Mn++在促进越过烷基嘧啶的DNA合成中的作用。在天然金属激活剂Mg++存在的情况下,DNA中单个位点存在的N3-乙基脱氧胸苷(N3-Et-dT)和O2-乙基脱氧胸苷(O2-Et-dT)会在损伤部位的3'端阻断体外DNA合成,并在每个损伤部位掺入dA后阻断合成。Mn++的存在允许越过损伤部位进行合成,dT会错误掺入到与N3-Et-dT和O2-Et-dT相对的位置,这表明这些损伤与A.T→T.A颠换诱变有关。在Mg++存在的情况下,O4-乙基脱氧胸苷(O4-Et-dT)对DNA合成的阻断是部分性的,并且也会被Mn++消除。与体内研究一致,在越过损伤部位合成过程中,dG会掺入到与O4-Et-dT相对的位置,导致A.T→G.C转换诱变。我们还发现了一类新的DNA加合物,即N3-羟基烷基脱氧尿苷(3-HA-dU)损伤,它们是由诱变和致癌脂肪族环氧化物产生的。3-HA-dU是在dC的N3位置初始烷基化后,接着快速水解脱氨形成的。正如在类似的诱变剂N3-Et-dT中观察到的那样,环氧乙烷诱导的3-羟基乙基脱氧尿苷(3-HE-dU)会阻断体外DNA合成,在Mn++存在的情况下可以绕过该阻断。正在确定越过损伤部位合成过程中与3-HE-dU相对掺入的核苷酸。这些研究表明Mn++在介导环境中重要的乙基化剂和脂肪族环氧化物的诱变和致癌作用中发挥作用。