Wang K, Spector A
Department of Ophthalmology, College of Physicians & Surgeons, Columbia University, New York, New York 10032.
Invest Ophthalmol Vis Sci. 1995 Feb;36(2):311-21.
Previous studies have shown that alpha-crystallin, a major lens protein, acts as a chaperone preventing the thermal denaturation of other lens crystallins. However, there has not been an examination of the alpha-crystallin chaperone ability with respect to the types of insult thought to cause human cataract. Therefore, an examination of the chaperone potential of alpha-crystallin under conditions of oxidative stress was undertaken.
Oxidation of alpha-, beta low (beta L)-, and gamma-crystallins was performed with an ascorbate FeCl3-EDTA-H2O2 system. Thermal denaturation was carried out by heating preparations at 62 degrees C or 72 degrees C. After protein denaturation, 360 nm scatter was measured. Protein-complex formation was measured with a TSK gel G4000 SW 600 x 7.5 mm exclusion column.
This study indicates that: (1) alpha-crystallin markedly reduces the 360-nm light scatter of gamma-crystallin caused by oxidation at 37 degrees C. (2) alpha-crystallin appears to protect the gamma-crystallin thiol groups from extensive oxidation. (3) Oxidation of alpha-crystallin causes only a small change in its ability to prevent heat-induced scattering of either gamma- or beta L-crystallin. (4) Oxidation of both alpha- and gamma-crystallin does not significantly affect the ability of alpha-crystallin to inhibit 360-nm light scattering of gamma-crystallin at 72 degrees C. (5) Oxidation of beta L-crystallin decreases its susceptibility to thermally induced scattering, but, conversely, oxidation of gamma-crystallin increases such susceptibility. (6) Oxidation of beta L-crystallin at 37 degrees C produces only a slight increase in light scatter, in contrast to observations obtained with gamma-crystallin. (7) alpha-crystallin provides long-term protection against thermally induced scatter of beta L-crystallin but not of gamma-crystallin. High-performance liquid chromatography (HPLC) analysis suggests that the alpha-gamma-crystallin complex gradually becomes insoluble at 72 degrees C, in contrast to the alpha-beta L-crystallin complex. Differing from thermal insult, alpha-crystallin causes a marked decrease in gamma-crystallin light scattering under long-term oxidation. (8) The alpha-gamma-crystallin complex that results from oxidation represents a weak interaction because it cannot be isolated with procedures used to obtain the thermally induced complex. (9) This work confirms a previous study demonstrating that each alpha monomer (alpha m) contains a binding site for a partially denatured crystallin.
The overall results indicate that alpha-crystallin can act as a chaperone under conditions of oxidative stress, decreasing the light scatter and thiol oxidation of other crystallins. Because oxidative stress is thought to be present under normal physiological conditions, it is probable that alpha-crystallin contributes to the mechanisms that maintain the lens in a transparent state.
以往研究表明,α-晶状体蛋白作为晶状体的主要蛋白质,可作为伴侣蛋白防止其他晶状体蛋白发生热变性。然而,尚未针对被认为会导致人类白内障的损伤类型对α-晶状体蛋白的伴侣蛋白能力进行研究。因此,开展了在氧化应激条件下对α-晶状体蛋白伴侣蛋白潜能的研究。
使用抗坏血酸-氯化铁-乙二胺四乙酸-过氧化氢系统对α-、β低分子量(βL)-和γ-晶状体蛋白进行氧化。通过在62℃或72℃加热制剂进行热变性。蛋白质变性后,测量360nm处的散射光。使用TSK凝胶G4000 SW 600×7.5mm排阻柱测量蛋白质复合物的形成。
本研究表明:(1)α-晶状体蛋白可显著降低37℃氧化引起的γ-晶状体蛋白在360nm处的光散射。(2)α-晶状体蛋白似乎可保护γ-晶状体蛋白的巯基免受广泛氧化。(3)α-晶状体蛋白的氧化对其防止γ-或βL-晶状体蛋白热诱导散射的能力仅产生微小变化。(4)α-和γ-晶状体蛋白的氧化均未显著影响α-晶状体蛋白在72℃抑制γ-晶状体蛋白360nm光散射的能力。(5)βL-晶状体蛋白的氧化降低了其对热诱导散射的敏感性,但相反,γ-晶状体蛋白的氧化增加了这种敏感性。(6)与γ-晶状体蛋白的观察结果相反,37℃下βL-晶状体蛋白的氧化仅使光散射略有增加。(7)α-晶状体蛋白可长期保护βL-晶状体蛋白免受热诱导散射,但不能保护γ-晶状体蛋白。高效液相色谱(HPLC)分析表明,与α-βL-晶状体蛋白复合物不同,α-γ-晶状体蛋白复合物在72℃时逐渐变得不溶。与热损伤不同,α-晶状体蛋白在长期氧化下可使γ-晶状体蛋白的光散射显著降低。(8)氧化产生的α-γ-晶状体蛋白复合物代表一种弱相互作用,因为它不能用用于获得热诱导复合物的方法分离出来。(9)这项工作证实了先前的一项研究,该研究表明每个α单体(αm)都含有一个与部分变性晶状体蛋白结合的位点。
总体结果表明,α-晶状体蛋白在氧化应激条件下可作为伴侣蛋白,减少其他晶状体蛋白的光散射和巯基氧化。由于正常生理条件下可能存在氧化应激,α-晶状体蛋白很可能有助于维持晶状体透明状态的机制。