Suppr超能文献

整群单元试验的成本效益设计。

Cost-efficient designs of cluster unit trials.

作者信息

McKinlay S M

机构信息

New England Research Institutes, Inc., Watertown, Massachusetts 02172.

出版信息

Prev Med. 1994 Sep;23(5):606-11. doi: 10.1006/pmed.1994.1098.

Abstract

BACKGROUND

Large field trials that randomize naturally occurring clusters such as communities, worksites, or schools are becoming widely accepted for evaluating complex interventions. The within-cluster measurement of individuals typically uses a cohort, followed throughout the trial or cross-sectional samples selected independently at each time point. The relative costs of these approaches is of concern in designing such trials.

METHODS

This paper takes the unified model for analyzing large cluster unit trials developed by Feldman and McKinlay (Stat Med 1993) and combines the resulting expression for the variance of the treatment effect with a simple cost function into an algorithm that produces the optimal trial design in terms of the number of clusters and the number of observations per cluster. Using the unified model developed in the prior paper, this algorithm also allows direct comparison of the cost of designs with equivalent precision. In particular, designs that use cohorts in each cluster unit and observe cohort members over time are contrasted with designs that draw independent cross-sectional samples from each cluster at each time point.

RESULTS

Using the algorithm and a realistic design problem, it is demonstrated that cohort designs are more cost efficient for short trials and high (> or = 0.75) autocorrelations.

CONCLUSIONS

The power of the algorithm in designing cost-efficient cluster unit trials is well demonstrated. Estimates of variance and cost components from prior trials need to be readily accessible for use in the algorithm, for planning subsequent trials.

摘要

背景

将自然形成的群组(如社区、工作场所或学校)进行随机分组的大型现场试验,正被广泛用于评估复杂干预措施。群组内个体的测量通常采用队列研究,在整个试验过程中进行跟踪,或者在每个时间点独立选取横断面样本。在设计此类试验时,这些方法的相对成本备受关注。

方法

本文采用了费尔德曼和麦金利(《统计医学》,1993年)开发的用于分析大型群组单位试验的统一模型,并将由此得出的治疗效果方差表达式与一个简单的成本函数相结合,形成一种算法,该算法能根据群组数量和每个群组的观察数量得出最优试验设计。利用前文开发的统一模型,该算法还能直接比较精度相当的设计的成本。特别是,将在每个群组单位中使用队列研究并随时间观察队列成员的设计,与在每个时间点从每个群组中抽取独立横断面样本的设计进行对比。

结果

通过使用该算法和一个实际的设计问题,结果表明队列设计在短期试验和高(≥0.75)自相关性情况下更具成本效益。

结论

该算法在设计具有成本效益的群组单位试验方面的能力得到了充分证明。为了规划后续试验,需要能够方便地获取先前试验中方差和成本成分的估计值,以便在算法中使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验