Suppr超能文献

Differential agonist-induced displacement of quinacrine and ethidium from their respective histrionicotoxin-sensitive binding sites on the Torpedo acetylcholine receptor.

作者信息

Arias H R, Johnson D A

机构信息

Division of Biomedical Sciences, University of California, Riverside 92521-0121.

出版信息

Biochemistry. 1995 Feb 7;34(5):1589-95. doi: 10.1021/bi00005a015.

Abstract

Fluorescence spectroscopy was used to begin to localize the agonist inhibitory binding site on the nicotinic acetylcholine receptor (AcChR) from Torpedo californica. High concentrations of three cholinergic agonists, suberyldicholine (SubCh), acetylcholine (AcCh), and carbamylcholine (CCh), differentially inhibited the binding of two noncompetitive inhibitors (NCIs), quinacrine and ethidium, which bind at distinctly different loci on the desensitized AcChR at zero membrane potential. The agonist-induced inhibition of quinacrine binding occurred at significantly lower (17-fold) concentrations than the inhibition of ethidium binding. Schild plots of SubCh inhibition of ethidium and quinacrine binding showed the competitive nature of the agonist inhibition of the binding of these two NCIs. The quenching constants for short-range quenching of receptor-bound quinacrine and ethidium fluorescence by spin-labeled acetylcholine were about the same as their inhibition constants for agonist-induced displacement of AcChR-bound quinacrine and ethidium. The results demonstrate that agonists can directly bind to both the quinacrine and the ethidium binding sites, albeit at different agonist concentrations. Because the agonist-induced displacement of receptor-bound quinacrine occurs at significantly lower concentrations than the displacement of ethidium, the quinacrine binding site is more likely than the ethidium binding site to form part of the agonist inhibitory binding site.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验