Wyss D F, Choi J S, Wagner G
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.
Biochemistry. 1995 Feb 7;34(5):1622-34. doi: 10.1021/bi00005a019.
CD2, a T cell specific surface adhesion receptor, is critically important for T lymphocytes to mediate their regulatory and effector functions. The amino terminal domain of human CD2 is responsible for cell adhesion, binding to CD58 on antigen-presenting cells or target cells. This adhesion domain in human CD2 contains a single high-mannose N-glycan. This carbohydrate or part of it appears to be required to maintain the native conformation of the polypeptide and its ability to bind CD58. To better understand the structural aspects that regulate human CD2 adhesion functions, we had previously determined the solution structure of the protein part of the N-glycosylated adhesion domain of human CD2 (hu-sCD2(105); MW approximately 13.6 kDa) by NMR spectroscopy. Here, we have identified protein--carbohydrate and carbohydrate--carbohydrate interactions and, in combination with previous knowledge from electrospray ionization mass spectrometry, have determined the composition of the heterogeneous high-mannose glycan in hu-sCD2(105). These contacts clearly define the carbohydrate's orientation with respect to the protein. The NMR data further suggest that one arm of the glycan is folded toward the trisaccharide core consisting of GlcNAc1-GlcNAc2-Man3. A detailed comparison between chemical shift data of free model oligosaccharides with those of the glycomers present in our hu-sCD2(105) sample reveals that only the resonances of the two GlcNAc residues are significantly different from those of free high-mannose glycans. This work was based on a new strategy to achieve sequential assignments of the 1H and 13C resonances of the heterogeneous high-mannose carbohydrate [(Man)nGlcNAc2, n = 5-8] in hu-sCD2(105) on the intact glycoprotein using a combination of homonuclear 1H-1H and heteronuclear 1H-13C NMR experiments at natural abundance.
CD2是一种T细胞特异性表面粘附受体,对T淋巴细胞介导其调节和效应功能至关重要。人CD2的氨基末端结构域负责细胞粘附,与抗原呈递细胞或靶细胞上的CD58结合。人CD2中的这种粘附结构域含有一个单一的高甘露糖N-聚糖。这种碳水化合物或其一部分似乎是维持多肽天然构象及其结合CD58能力所必需的。为了更好地理解调节人CD2粘附功能的结构方面,我们之前通过核磁共振光谱法确定了人CD2的N-糖基化粘附结构域(hu-sCD2(105);分子量约13.6 kDa)的蛋白质部分的溶液结构。在这里,我们确定了蛋白质-碳水化合物和碳水化合物-碳水化合物相互作用,并结合之前电喷雾电离质谱的知识,确定了hu-sCD2(105)中异质高甘露糖聚糖的组成。这些相互作用清楚地定义了碳水化合物相对于蛋白质的取向。核磁共振数据进一步表明,聚糖的一个臂向由GlcNAc1-GlcNAc2-Man3组成的三糖核心折叠。对游离模型寡糖的化学位移数据与我们hu-sCD2(105)样品中存在的聚糖异构体的化学位移数据进行详细比较,发现只有两个GlcNAc残基的共振与游离高甘露糖聚糖的共振有显著差异。这项工作基于一种新策略,通过在天然丰度下结合同核1H-1H和异核1H-13C核磁共振实验,对完整糖蛋白hu-sCD2(105)中异质高甘露糖碳水化合物[(Man)nGlcNAc2, n = 5-8]的1H和13C共振进行顺序归属。