Presta A, Green A R, Zelazowski A, Stillman M J
Department of Chemistry, University of Western Ontario, London, Canada.
Eur J Biochem. 1995 Jan 15;227(1-2):226-40. doi: 10.1111/j.1432-1033.1995.tb20380.x.
Circular dichroism and ultraviolet absorption spectral data have been used to probe the binding mechanism for formation and the structure of the copper(I)-thiolate binding clusters in rabbit liver metallothionein during addition of Cu+ to aqueous solutions of Zn7-metallothionein 2 and Cd5Zn2-metallothionein 2. Mammalian metallothionein binds metals in two binding sites, namely the alpha and beta domains. Spectral data which probe the distribution of Cu(I) between the two binding domains clearly show that both the site of binding (alpha or beta), and the structures of the specific metal-thiolate clusters formed, are dependent on temperature and on the nature of the starting protein (either Zn7-metallothionein or Cd5Zn2-metallothionein). CD spectra acquired during the addition of Cu+ to Zn7-metallothionein show that Cu+ replace the bound Zn(II) in a domain-distributed manner with complete removal of the Zn(II) after addition of 12 Cu+. Spectral and metal analyses prove that a series of Cu(I)-metallothionein species are formed by a non-cooperative metal-binding mechanism with a continuum of Cu(I):metallothionein stoichiometries. Observation of a series of spectral saturation points signal the formation of distinct optically active Cu(I)-thiolate structures for the Cu9Zn2-metallothionein, Cu12-metallothionein, and the Cu15-metallothionein species. These data very clearly show that for Cu(I) binding to Zn7-metallothionein, there are several key Cu(I):metallothionein stoichiometric ratios, and not just the single value of 12. The CD spectra up to the Cu12-metallothionein species are defined by bands located at 255(+) nm and 280(-) nm. Interpretation of the changes in the CD and ultraviolet absorption spectral data recorded between 3 degrees C and 52 degrees C as Cu+ is added to Zn-metallothionein show that copper-thiolate cluster formation is strongly temperature dependent. These changes in spectral properties are interpreted in terms of kinetic versus thermodynamic control of the metal-binding pathways as Cu+ binds to the protein. At low temperatures (3 degrees C and 10 degrees C) the spectral data indicate a kinetically controlled mechanism whereby an activation barrier inhibits formation of ordered copper-thiolate structures until formation of Cu12-metallothionein. At higher temperatures (> 30 degrees C) the activation barrier is overcome, allowing formation of new Cu(I)-thiolate clusters with unique spectral properties, especially at the Cu9Zn2-metallothionein point. The CD spectra also show that a Cu15-metallothionein species with a well-defined, three-dimensional structure forms at all temperatures, characterized by a band near 335 nm, indicating the presence of diagonal Cu(I).(ABSTRACT TRUNCATED AT 250 WORDS)
圆二色光谱和紫外吸收光谱数据已被用于探究在向Zn7-金属硫蛋白2和Cd5Zn2-金属硫蛋白2的水溶液中添加Cu+期间,兔肝金属硫蛋白中铜(I)-硫醇盐结合簇的形成结合机制及其结构。哺乳动物金属硫蛋白在两个结合位点结合金属,即α和β结构域。探测Cu(I)在两个结合结构域之间分布的光谱数据清楚地表明,结合位点(α或β)以及形成的特定金属-硫醇盐簇的结构均取决于温度和起始蛋白的性质(Zn7-金属硫蛋白或Cd5Zn2-金属硫蛋白)。在向Zn7-金属硫蛋白中添加Cu+的过程中获得的圆二色光谱表明,Cu+以结构域分布的方式取代结合的Zn(II),在添加12个Cu+后Zn(II)被完全去除。光谱和金属分析证明,一系列Cu(I)-金属硫蛋白物种是通过非协同金属结合机制形成的,具有连续的Cu(I):金属硫蛋白化学计量比。观察到一系列光谱饱和点表明,Cu9Zn2-金属硫蛋白、Cu12-金属硫蛋白和Cu15-金属硫蛋白物种形成了独特的光学活性铜(I)-硫醇盐结构。这些数据非常清楚地表明,对于Cu(I)与Zn7-金属硫蛋白的结合,存在几个关键的Cu(I):金属硫蛋白化学计量比,而不仅仅是单一的12值。直至Cu12-金属硫蛋白物种的圆二色光谱由位于255(+)nm和280(-)nm处的谱带定义。对在3℃至52℃之间记录的、在向Zn-金属硫蛋白中添加Cu+时的圆二色光谱和紫外吸收光谱数据变化的解释表明,铜-硫醇盐簇的形成强烈依赖于温度。这些光谱性质的变化是根据Cu+与蛋白质结合时金属结合途径的动力学与热力学控制来解释的。在低温(3℃和10℃)下,光谱数据表明存在一种动力学控制机制,即活化能垒抑制有序铜-硫醇盐结构的形成,直至形成Cu12-金属硫蛋白。在较高温度(>30℃)下,活化能垒被克服,允许形成具有独特光谱性质的新铜(I)-硫醇盐簇,尤其是在Cu9Zn2-金属硫蛋白点。圆二色光谱还表明,一种具有明确三维结构的Cu15-金属硫蛋白物种在所有温度下均形成,其特征是在335nm附近有一条谱带,表明存在对角Cu(I)。(摘要截断于250字)