Suppr超能文献

Masquerade: a novel secreted serine protease-like molecule is required for somatic muscle attachment in the Drosophila embryo.

作者信息

Murugasu-Oei B, Rodrigues V, Yang X, Chia W

机构信息

Institute of Molecular and Cell Biology, National University of Singapore.

出版信息

Genes Dev. 1995 Jan 15;9(2):139-54. doi: 10.1101/gad.9.2.139.

Abstract

Diverse developmental processes, such as neuronal growth cone migration and cell shape changes, are mediated by the interactions of cells with the extracellular matrix. We describe here a secreted molecule encoded by the Drosophila masquerade (mas) gene. Total loss of mas function causes defective muscle attachment. This mutant phenotype suggests that mas normally acts to stabilize cell-matrix interaction and represents a novel functional and limiting component in the adhesion process. mas encodes a 1047-amino-acid preproprotein that is further processed by proteolytic cleavage to generate two polypeptides. The carboxy-terminal polypeptide is highly similar to serine proteases and has an extracellular localization; however, it is unlikely to possess proteolytic activity, because the catalytic site serine has been substituted by a glycine residue. During embryonic development, the mas amino- and carboxy-terminal polypeptides are differentially localized. The mas carboxy-terminal polypeptide accumulates at all somatic muscle attachment sites, which corresponds well with the morphological defect seen in the mas mutants. Our findings demonstrate the involvement of an extracellular component in somatic muscle attachment. We propose that mas acts via its modified serine protease motif, either as a novel adhesion molecule and/or as a competitive antagonist of serine proteases, to stabilize muscle attachment.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验