Morrison M, Schonbaum G R
Annu Rev Biochem. 1976;45:861-88. doi: 10.1146/annurev.bi.45.070176.004241.
Peroxidase-catalyzed halogenation reactions have been established as being important in the biosynthesis of the hormone thyroxine and in biological defense mechanisms. Recently these reactions have been recognized as valuable tools for the study of proteins as well as their arrangement in macromolecular structures. The pathways of peroxidase catalyses can be accommodated within the framework of the classical Chance-George mechanism. This implies that the initial steps of the reaction invariably involve oxidation of peroxidases by peroxides--and that the resulting derivative, compound I, is the oxidant of the halide ions. Such reactions may result either in the formation of hypohalous acids, or in halogenation of the enzyme apoprotein, followed by transhalogenation to substrate for halogenation. Chloro- and myeloperoxidases catalyze oxidation of all halide ions, except F-; oxidation of bromide and iodide is mediated by lactoperoxidase, but horseradish peroxidase only oxidizes iodide. All of the above enzymes except horseradish will oxidize the pseudo halide thiocyanate. The origins of this differentiation remain to be defined, but they presumably reflect significant variation in oxidation potential of different peroxidase-peroxide derivatives, rather than constraints on the peroxidase-donor interactions. As pointed out above, halogenation of the amino acids tyrosine and histidine or these residues in proteins can take place on the enzyme. This makes lactoperoxidase-catalyzed iodination selective. The amino acid residues in proteins that are iodinated depend not only on reactivity of the amino acid residue but also on its geometric location. Thus lactoperoxidase-catalyzed iodination can be a useful tool in the study of protein structure and function. It is also useful in establishing the geometric position of proteins within macromolecular structures. Thyroid peroxidase catalyzes iodination of thyroglobulin and is involved in a second important step, the coupling of the iodotyrosines to form thyroxine or triiodothyronine. A proposed mechanism for this reaction suggests that the oxidation is mediated by the iodoenzyme derivative mentioned above followed by a prototropic rearrangement and scission to form the ether bound of thyronine and a serine residue on thyroglobulin.
过氧化物酶催化的卤化反应已被确认为在激素甲状腺素的生物合成以及生物防御机制中具有重要作用。最近,这些反应已被视为研究蛋白质及其在大分子结构中排列方式的有价值工具。过氧化物酶催化途径可纳入经典的钱斯 - 乔治机制框架内。这意味着反应的初始步骤总是涉及过氧化物对过氧化物酶的氧化,并且由此产生的衍生物化合物I是卤离子的氧化剂。此类反应可能导致次卤酸的形成,或者导致酶脱辅基蛋白的卤化,随后进行卤转移至底物进行卤化。氯过氧化物酶和髓过氧化物酶催化除F - 以外的所有卤离子的氧化;溴化物和碘化物的氧化由乳过氧化物酶介导,但辣根过氧化物酶仅氧化碘化物。除辣根过氧化物酶外,上述所有酶都会氧化拟卤化物硫氰酸盐。这种差异的起源尚待确定,但它们可能反映了不同过氧化物酶 - 过氧化物衍生物氧化电位的显著变化,而不是对过氧化物酶 - 供体相互作用的限制。如上所述,氨基酸酪氨酸和组氨酸或蛋白质中的这些残基的卤化可在酶上发生。这使得乳过氧化物酶催化的碘化具有选择性。蛋白质中被碘化的氨基酸残基不仅取决于氨基酸残基的反应性,还取决于其几何位置。因此,乳过氧化物酶催化的碘化可成为研究蛋白质结构和功能的有用工具。它在确定蛋白质在大分子结构中的几何位置方面也很有用。甲状腺过氧化物酶催化甲状腺球蛋白的碘化,并参与第二个重要步骤,即碘酪氨酸的偶联以形成甲状腺素或三碘甲状腺原氨酸。该反应的一种 proposed 机制表明,氧化由上述碘酶衍生物介导,随后进行质子转移重排和断裂,以形成甲状腺素的醚键和甲状腺球蛋白上的丝氨酸残基。 (注:原文中“proposed”拼写有误,这里按正确理解翻译为“提出的”)