Suppr超能文献

Bafilomycin A1 inhibits IL-1-stimulated proteoglycan degradation by chondrocytes without affecting stromelysin synthesis.

作者信息

Yocum S A, Lopresti-Morrow L L, Gabel C A, Milici A J, Mitchell P G

机构信息

Department of Immunology and Infectious Diseases, Pfizer Inc., Groton, Connecticut 06340.

出版信息

Arch Biochem Biophys. 1995 Feb 1;316(2):827-35. doi: 10.1006/abbi.1995.1111.

Abstract

Interleukin-1 alpha (IL-1) stimulated the release of degraded proteoglycan from primary cultures of chondrocyte monolayers in a time- and dose-dependent fashion. Bafilomycin A1, a specific inhibitor of the vacuolar H(+)-ATPase, efficiently blocked acidification of the chondrocyte vacuolar system. Under these conditions IL-1-stimulated proteoglycan degradation was inhibited by bafilomycin A1 with an IC50 of < 10 nM in both chondrocyte monolayers and articular cartilage explants. This concentration was at least 100-fold less than that required to partially inhibit total protein synthesis. In chondrocyte monolayers, bafilomycin A1 could be added several hours after IL-1 and complete inhibition was still observed. Tumor necrosis factor-alpha and retinoic acid also stimulated proteoglycan degradation in chondrocyte monolayers, and in both cases the response was inhibited by bafilomycin A1. These results suggest that maintenance of vacuolar acidity is required for cytokine stimulated proteoglycan degradation and that this requirement is at a point distal to receptor binding and early signal transduction events. IL-1 also stimulated the synthesis and secretion of prostromelysin by chondrocyte monolayers, however, under conditions in which IL-1 stimulated proteoglycan release was totally blocked by bafilomycin A1, there was no effect on IL-1-stimulated stromelysin secretion or stromelysin enzyme activity. These results, in which stromelysin synthesis and proteoglycan degradation were dissociated, suggest that an additional enzyme is responsible for proteoglycan degradation in this chondrocyte monolayer system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验