Harris P A, Bosan S, Harris T R, Laughlin M H, Overholser K A
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235.
Ann Biomed Eng. 1994 Nov-Dec;22(6):622-37. doi: 10.1007/BF02368288.
The confident identification of parameters is important in the practical application of physiological models. However, the task of parameter identification is often complicated by interactions among parameters and by the fact that the sensitivity of the model to changes in a given parameter is generally a function of all the other parameters. Here we illustrate a graphical approach to parameter identification that allows the modeler to visualize the behavior of the model, the sensitivity functions, and certain functions characteristic of parameter interdependence. The visual display can be generated over any desired portion of parameter space. The technique is applied to a simple, four-parameter, myocardial pump model of the coronary circulation. The results indicate that over specified ranges of parameters, it is possible to distinguish among the four parameters of the model: the ratio of proximal-to-distal resistance, alpha; the overall resistance of the vascular bed, R; the compliance of the vascular bed, C; and a parameter, kappa, relating tissue pressure to left ventricular pressure. It was found that in order to identify all parameters uniquely, it was necessary to regress upon both coronary inflow and outflow.
在生理模型的实际应用中,准确识别参数非常重要。然而,参数识别任务常常因参数之间的相互作用以及模型对给定参数变化的敏感性通常是所有其他参数的函数这一事实而变得复杂。在此,我们阐述一种参数识别的图形化方法,该方法能让建模者直观看到模型的行为、敏感性函数以及参数相互依存的某些特征函数。可视化显示可在参数空间的任何期望部分生成。该技术应用于一个简单的、具有四个参数的冠状动脉循环心肌泵模型。结果表明,在特定的参数范围内,可以区分模型的四个参数:近端与远端阻力之比α;血管床的总阻力R;血管床的顺应性C;以及一个将组织压力与左心室压力相关联的参数κ。研究发现,为了唯一地识别所有参数,有必要对冠状动脉流入和流出进行回归分析。