Suppr超能文献

用于描述两种不同配体与蛋白质分子竞争性结合的精确数学表达式。

An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule.

作者信息

Wang Z X

机构信息

National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing, China.

出版信息

FEBS Lett. 1995 Feb 27;360(2):111-4. doi: 10.1016/0014-5793(95)00062-e.

Abstract

The dissociation constant for the binding of a spectroscopically invisible or non-radioactive ligand to its protein receptor can be determined in a competition experiment by using a structural analog that contains a reporter group. Many plotting and numerical analysis methods have been developed to calculate the binding constant of unlabeled ligand from the displacement experiments. However, a common problem with these plotting methods is that the equation transformations inevitably result in non-standard error distribution, and thus simple linear regression can not be used to extract correct values for the parameters. In the case of the numerical analysis methods, one would be faced with the possible existence of multiple solutions. In this paper, the exact mathematical expression for describing competitive binding of two different ligands to a protein molecule is presented in terms of the total concentrations of species in the system. Thus, using a commercially available non-linear regression program, all unknown parameters for describing this system can be determined by fitting the experimental data to the algebraically explicit equation without any data transformations. The distribution curves of all the species in the system can also be constructed with this equation. It is particularly useful for the cases in which the concentrations of all the species in the system are comparable to each other.

摘要

通过使用含有报告基团的结构类似物,可在竞争实验中测定光谱不可见或非放射性配体与其蛋白质受体结合的解离常数。已开发出许多绘图和数值分析方法,用于根据位移实验计算未标记配体的结合常数。然而,这些绘图方法的一个常见问题是,方程变换不可避免地导致非标准误差分布,因此不能使用简单线性回归来提取参数的正确值。对于数值分析方法,可能会面临存在多个解的情况。本文根据系统中各物种的总浓度,给出了描述两种不同配体与蛋白质分子竞争性结合的精确数学表达式。因此,使用市售的非线性回归程序,通过将实验数据拟合到代数显式方程,无需任何数据变换,即可确定描述该系统的所有未知参数。利用该方程还可构建系统中所有物种的分布曲线。这对于系统中所有物种浓度彼此相当的情况特别有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验