Suppr超能文献

转录修复偶联因子的结构与功能。I. 结构域与结合特性。

Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties.

作者信息

Selby C P, Sancar A

机构信息

Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599.

出版信息

J Biol Chem. 1995 Mar 3;270(9):4882-9. doi: 10.1074/jbc.270.9.4882.

Abstract

The 130-kDa mfd gene product is required for coupling transcription to repair in Escherichia coli. Mfd displaces E. coli RNA polymerase (Pol) stalled at a lesion, binds to the damage recognition protein UvrA, and increases the template strand repair rate during transcription. Here, the interactions of Mfd (transcription-repair coupling factor, TRCF) with DNA, RNA Pol, and UvrA were investigated. TRCF bound nonspecifically to double stranded DNA; binding to DNA produced alternating DNase I-protected and -hypersensitive regions, suggesting possible wrapping of the DNA around the enzyme. Weaker binding to single stranded DNA and no binding to single stranded RNA were observed. DNA binding required ATP, and hydrolysis of ATP promoted dissociation. Removal of a stalled RNA Pol also requires ATP hydrolysis. Apparently, TRCF recognizes a stalled elongation complex by directly interacting with RNA Pol, since binding to a synthetic transcription bubble was no stronger than binding to double stranded DNA, and binding to free RNA Pol holoenzyme and to initiation and elongation complexes in the absence of adenosine 5'-O-(thiotriphosphate) were observed. Structure-function analysis showed that residues 379-571 are involved in binding to a stalled RNAP. The helicase motifs region, residues 571-931, binds to ATP and duplex polynucleotide (DNA:DNA or DNA:RNA). Dissociation of the ternary complex upon hydrolysis of ATP also requires the carboxyl terminus of TRCF. Finally, residues 1-378 bind to UvrA and deliver the damage recognition component of the excision nuclease to the lesion.

摘要

130-kDa的mfd基因产物是大肠杆菌中转录与修复偶联所必需的。Mfd能取代停滞在损伤处的大肠杆菌RNA聚合酶(Pol),与损伤识别蛋白UvrA结合,并在转录过程中提高模板链的修复速率。在此,对Mfd(转录-修复偶联因子,TRCF)与DNA、RNA Pol和UvrA之间的相互作用进行了研究。TRCF能非特异性地结合双链DNA;与DNA的结合产生了交替的DNase I保护区域和高敏区域,这表明DNA可能缠绕在该酶周围。观察到其与单链DNA的结合较弱,且不与单链RNA结合。DNA结合需要ATP,ATP水解会促进解离。去除停滞的RNA Pol也需要ATP水解。显然,TRCF通过直接与RNA Pol相互作用来识别停滞的延伸复合物,因为其与合成转录泡的结合并不比与双链DNA的结合更强,并且观察到在不存在腺苷5'-O-(硫代三磷酸)的情况下,其与游离RNA Pol全酶以及起始和延伸复合物的结合。结构-功能分析表明,379-571位残基参与与停滞的RNA聚合酶的结合。解旋酶基序区域,即571-931位残基,与ATP和双链多核苷酸(DNA:DNA或DNA:RNA)结合。ATP水解时三元复合物的解离也需要TRCF的羧基末端。最后,1-378位残基与UvrA结合,并将切除核酸酶的损伤识别成分递送至损伤处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验