Chen P, Ailion M, Weyand N, Roth J
Biology Department, University of Utah, Salt Lake City 84112.
J Bacteriol. 1995 Mar;177(6):1461-9. doi: 10.1128/jb.177.6.1461-1469.1995.
The cob operon of Salmonella typhimurium includes 20 genes devoted to the synthesis of adenosyl-cobalamin (coenzyme B12). Mutants with lesions in the promoter-distal end of the operon synthesize vitamin B12 only if provided with 5,6-dimethylbenzimidazole (DMB), the lower ligand of vitamin B12. In the hope of identifying a gene(s) involved in synthesis of DMB, the DNA base sequence of the end of the operon has been determined; this completes the sequence of the cob operon. The cobT gene is the last gene in the operon. Four CobII (DMB-) mutations mapping to different deletion intervals of the CobII region were sequenced; all affect the cobT open reading frame. Both the CobT protein of S. typhimurium and its Pseudomonas homolog have been shown in vitro to catalyze the transfer of ribose phosphate from nicotinate mononucleotide to DMB. This reaction does not contribute to DMB synthesis but rather is the first step in joining DMB to the corrin ring compound cobinamide. Thus, the phenotype of Salmonella cobT mutants conflicts with the reported activity of the affected enzyme, while Pseudomonas mutants have the expected phenotype. J. R. Trzebiatowski, G. A. O'Toole, and J. C. Escalante Semerena have suggested (J. Bacteriol. 176:3568-3575, 1994) that S. typhimurium possesses a second phosphoribosyltransferase activity (CobB) that requires a high concentration of DMB for its activity. We support that suggestion and, in addition, provide evidence that the CobT protein catalyzes both the synthesis of DMB and transfer of ribose phosphate. Some cobT mutants appear defective only in DMB synthesis, since they grow on low levels of DMB and retain their CobII phenotype in the presence of a cobB mutation. Other mutants including those with deletions, appear defective in transferase, since they require a high level of DMB (to activate CobB) and, in combination with a cobB mutation, they eliminate the ability to join DMB and cobinamide. Immediately downstream of the cob operon is a gene (called ORF in this study) of unknown function whose mutants have no detected phenotype. Just counterclockwise of ORF is an asparagine tRNA gene (probably asnU). Farther counterclockwise, a serine tRNA gene (serU or supD) is weakly cotransducible with the cobT gene.
鼠伤寒沙门氏菌的钴胺素操纵子包含20个用于合成腺苷钴胺素(辅酶B12)的基因。只有在提供维生素B12的较低配体5,6 - 二甲基苯并咪唑(DMB)时,操纵子启动子远端发生损伤的突变体才能合成维生素B12。为了确定参与DMB合成的基因,已测定了操纵子末端的DNA碱基序列;这完成了钴胺素操纵子的序列测定。cobT基因是操纵子中的最后一个基因。对定位到CobII区域不同缺失区间的四个CobII(DMB - )突变进行了测序;所有突变均影响cobT开放阅读框。已证明鼠伤寒沙门氏菌的CobT蛋白及其假单胞菌同源物在体外可催化磷酸核糖从烟酸单核苷酸转移至DMB。该反应对DMB合成无贡献,而是DMB与咕啉环化合物钴胺酰胺结合的第一步。因此,沙门氏菌cobT突变体的表型与受影响酶的报道活性相矛盾,而假单胞菌突变体具有预期的表型。J. R. Trzebiatowski、G. A. O'Toole和J. C. Escalante Semerena曾提出(《细菌学杂志》176:3568 - 3575, 1994)鼠伤寒沙门氏菌具有第二种磷酸核糖基转移酶活性(CobB),其活性需要高浓度的DMB。我们支持这一观点,此外,还提供证据表明CobT蛋白催化DMB的合成以及磷酸核糖的转移。一些cobT突变体似乎仅在DMB合成方面存在缺陷,因为它们能在低水平的DMB上生长,并且在存在cobB突变的情况下保留其CobII表型。其他突变体,包括那些有缺失的突变体,似乎在转移酶方面存在缺陷,因为它们需要高水平的DMB(以激活CobB),并且与cobB突变结合时,它们消除了连接DMB和钴胺酰胺的能力。钴胺素操纵子的紧邻下游是一个功能未知的基因(本研究中称为ORF),其突变体未检测到表型。ORF的逆时针方向紧邻一个天冬酰胺tRNA基因(可能是asnU)。再逆时针方向更远的位置,一个丝氨酸tRNA基因(serU或supD)与cobT基因弱共转导。