Sattler I, Roessner C A, Stolowich N J, Hardin S H, Harris-Haller L W, Yokubaitis N T, Murooka Y, Hashimoto Y, Scott A I
Center for Biological NMR, Chemistry Department, Texas A&M University, College Station 77843.
J Bacteriol. 1995 Mar;177(6):1564-9. doi: 10.1128/jb.177.6.1564-1569.1995.
We cloned, sequenced, and overexpressed cobA, the gene encoding uroporphyrinogen III methyltransferase in Propionibacterium freudenreichii, and examined the catalytic properties of the enzyme. The methyltransferase is similar in mass (27 kDa) and homologous to the one isolated from Pseudomonas denitrificans. In contrast to the much larger isoenzyme encoded by the cysG gene of Escherichia coli (52 kDa), the P. freudenreichii enzyme does not contain the additional 22-kDa peptide moiety at its N-terminal end bearing the oxidase-ferrochelatase activity responsible for the conversion of dihydrosirohydrochlorin (precorrin-2) to siroheme. Since it does not contain this moiety, it is not a likely candidate for synthesis of a cobalt-containing early intermediate that has been proposed for the vitamin B12 biosynthetic pathway in P. freudenreichii. Uroporphyrinogen III methyltransferase of P. freudenreichii not only catalyzes the addition of two methyl groups to uroporphyrinogen III to afford the early vitamin B12 intermediate, precorrin-2, but also has an overmethylation property that catalyzes the synthesis of several tri- and tetra-methylated compounds that are not part of the vitamin B12 pathway. The enzyme catalyzes the addition of three methyl groups to uroporphyrinogen I to form trimethylpyrrocorphin, the intermediate necessary for biosynthesis of the natural products, factors S1 and S3, previously isolated from this organism. A second gene found upstream from the cobA gene encodes a protein homologous to CbiO of Salmonella typhimurium, a membrane-bound, ATP-dependent transport protein thought to be part of the cobalt transport system involved in vitamin B12 synthesis. These two genes do not appear to constitute part of an extensive cobalamin operon.
我们克隆、测序并过表达了费氏丙酸杆菌中编码尿卟啉原III甲基转移酶的基因cobA,并研究了该酶的催化特性。该甲基转移酶的分子量(27 kDa)与从反硝化假单胞菌中分离出的甲基转移酶相似且具有同源性。与大肠杆菌cysG基因编码的大得多的同工酶(52 kDa)不同,费氏丙酸杆菌的这种酶在其N末端不包含额外的22 kDa肽部分,该部分具有负责将二氢卟吩胆色素原(前咕啉-2)转化为 siro 血红素的氧化酶-亚铁螯合酶活性。由于它不包含这个部分,所以它不太可能是合成费氏丙酸杆菌维生素B12生物合成途径中提出的含钴早期中间体的候选者。费氏丙酸杆菌的尿卟啉原III甲基转移酶不仅催化向尿卟啉原III添加两个甲基以生成早期维生素B12中间体前咕啉-2,还具有过甲基化特性,可催化合成几种不属于维生素B12途径的三甲基和四甲基化化合物。该酶催化向尿卟啉原I添加三个甲基以形成三甲基吡咯卟吩,这是先前从该生物体中分离出的天然产物S1和S3生物合成所需的中间体。在cobA基因上游发现的第二个基因编码一种与鼠伤寒沙门氏菌的CbiO同源的蛋白质,CbiO是一种膜结合的、ATP依赖的转运蛋白,被认为是参与维生素B12合成的钴转运系统的一部分。这两个基因似乎不构成广泛的钴胺素操纵子的一部分。