Li Peng, Wang Zhiqiang, Wang Xiaodi, Liu Fengzhi, Wang Haibo
Institute of Pomology of CAAS, Xingcheng 125100, China.
Int J Mol Sci. 2024 Feb 27;25(5):2765. doi: 10.3390/ijms25052765.
Strawberry plants require light for growth, but the frequent occurrence of low-light weather in winter can lead to a decrease in the photosynthetic rate (Pn) of strawberry plants. Light-emitting diode (LED) systems could be used to increase Pn. However, the changes in the phytohormones and transcriptomic reprogramming in strawberry leaves under different light qualities are still unclear. In this study, we treated strawberry plants with sunlight, sunlight covered with a 50% sunshade net, no light, blue light (460 nm), red light (660 nm), and a 50% red/50% blue LED light combination for 3 days and 7 days. Our results revealed that the light quality has an effect on the contents of Chl a and Chl b, the minimal fluorescence (F), and the Pn of strawberry plants. The light quality also affected the contents of abscisic acid (ABA), auxin (IAA), -zeatin-riboside (Z), jasmonic acid (JA), and salicylic acid (SA). RNA sequencing (RNA-seq) revealed that differentially expressed genes (DEGs) are significantly enriched in photosynthesis antenna proteins, photosynthesis, carbon fixation in photosynthetic organisms, porphyrin and chlorophyll metabolisms, carotenoid biosynthesis, tryptophan metabolism, phenylalanine metabolism, zeatin biosynthesis, and linolenic acid metabolism. We then selected the key DEGs based on the results of a weighted gene co-expression network analysis (WGCNA) and drew nine metabolic heatmaps and protein-protein interaction networks to map light regulation.
草莓植株生长需要光照,但冬季频繁出现的弱光天气会导致草莓植株光合速率(Pn)下降。发光二极管(LED)系统可用于提高光合速率。然而,不同光质下草莓叶片中植物激素的变化和转录组重编程仍不清楚。在本研究中,我们用太阳光、覆盖50%遮阳网的太阳光、无光、蓝光(460nm)、红光(660nm)以及50%红光/50%蓝光的LED光组合处理草莓植株3天和7天。我们的结果表明,光质对草莓植株叶绿素a和叶绿素b的含量、最小荧光(F)以及光合速率有影响。光质还影响脱落酸(ABA)、生长素(IAA)、玉米素核苷(Z)、茉莉酸(JA)和水杨酸(SA)的含量。RNA测序(RNA-seq)显示,差异表达基因(DEG)在光合天线蛋白、光合作用、光合生物中的碳固定、卟啉和叶绿素代谢、类胡萝卜素生物合成、色氨酸代谢、苯丙氨酸代谢、玉米素生物合成和亚麻酸代谢中显著富集。然后,我们根据加权基因共表达网络分析(WGCNA)的结果选择关键的差异表达基因,并绘制了九个代谢热图和蛋白质-蛋白质相互作用网络来描绘光调控。