Xiao W, Fontanie T
Department of Microbiology, University of Saskatchewan, Saskatoon, Canada.
Mutat Res. 1995 Mar;336(2):133-42. doi: 10.1016/0921-8777(94)00048-b.
Common Mer- cell lines deficient in O6-methylguanine DNA methyltransferase (MTase) activity probably result from the down-regulation of, rather than mutations in, the MGMT gene. However, the down-regulation of other unrelated genes was also observed in some of these cell lines, making it difficult to determine the precise functions of the MGMT MTase gene. To study the biological function of human MGMT MTase, we seek to utilize a newly created yeast mgt1 mutant deficient in the DNA repair MTase activity. The human MGMT cDNA was cloned into yeast expression vectors so that the MGMT gene is under the control of either an inducible GAL1 promoter or a constitutive ADH1 promoter. Upon galactose induction, the PGAL1-MGMT transformant had about 40-fold MTase activity compared to the wild-type strain. MGMT overexpression protected the yeast mgt1 mutant against alkylation-induced killing and mutation. Limited expression of the MGMT gene in the mgt1 mutant still provides significant alkylation resistance, albeit at a reduced level. The yeast mgt1 mutants increase spontaneous mutation rate, whereas constitutive expression of the MGMT gene lowered the spontaneous mutation rate in the mgt1 mutant to the wild-type level. We suggest that MGMT MTase may play the same role in human cells as the MGT1 MTase in yeast cells. Thus our results demonstrate that the human MGMT gene functionally complements the yeast MTase-deficient mutant in the protection against exogenous and endogenous DNA alkylation damage, which provides a useful tool for the study of in vivo mammalian MTase functions.
常见的缺乏O6-甲基鸟嘌呤DNA甲基转移酶(MTase)活性的Mer-细胞系可能是由于MGMT基因的下调而非突变所致。然而,在其中一些细胞系中也观察到了其他无关基因的下调,这使得确定MGMT MTase基因的确切功能变得困难。为了研究人类MGMT MTase的生物学功能,我们试图利用一种新创建的缺乏DNA修复MTase活性的酵母mgt1突变体。将人类MGMT cDNA克隆到酵母表达载体中,使得MGMT基因受诱导型GAL1启动子或组成型ADH1启动子的控制。在半乳糖诱导后,与野生型菌株相比,PGAL1-MGMT转化体具有约40倍的MTase活性。MGMT的过表达保护酵母mgt1突变体免受烷基化诱导的杀伤和突变。MGMT基因在mgt1突变体中的有限表达仍然提供了显著的烷基化抗性,尽管水平有所降低。酵母mgt1突变体增加了自发突变率,而MGMT基因的组成型表达将mgt1突变体中的自发突变率降低到野生型水平。我们认为MGMT MTase在人类细胞中的作用可能与酵母细胞中的MGT1 MTase相同。因此,我们的结果表明,人类MGMT基因在功能上补充了酵母MTase缺陷突变体,以保护其免受外源性和内源性DNA烷基化损伤,这为研究体内哺乳动物MTase功能提供了一个有用的工具。