Corrette-Bennett S E, Lovett S T
Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110.
J Biol Chem. 1995 Mar 24;270(12):6881-5. doi: 10.1074/jbc.270.12.6881.
We have examined coupled reactions with the RecA protein of Escherichia coli, which can mediate DNA strand exchange in vitro between homologous DNA molecules, and the RecJ exonuclease, a 5' to 3' single-stranded DNA exonuclease. In RecA-mediated strand-transfer reactions between circular single-stranded and duplex linear DNA, we have found that RecJ stimulates the rate of heteroduplex product formation. Because RecJ must be present concurrent with strand transfer and RecJ does not detectably stimulate the synapsis stage of the reaction, we believe that RecJ stimulates specifically the branch migration phase of the RecA strand-transfer reaction. RecJ also dramatically enhances the efficiency with which RecA is able to transverse regions of non-homology in the substrates. We propose a model where RecJ degrades the displaced strand produced by strand exchange which competes for pairing with the transferred strand, thus driving forward the unidirectional branch migration mediated by RecA protein. This suggests a new role for exonucleases in genetic recombination, facilitating the strand-transfer reaction itself.