Suppr超能文献

新生大鼠延髓切片中呼吸神经元的起搏器行为

Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat.

作者信息

Johnson S M, Smith J C, Funk G D, Feldman J L

机构信息

Department of Physiological Science, University of California, Los Angeles 90024-1527.

出版信息

J Neurophysiol. 1994 Dec;72(6):2598-608. doi: 10.1152/jn.1994.72.6.2598.

Abstract
  1. We have hypothesized that pacemaker neurons in the pre-Bötzinger complex (pre-BötC) form the kernel for respiratory rhythm generation. A prediction of this hypothesis is that oscillatory behavior in some respiratory neurons could persist in the absence of synaptic transmission. In this study we used extracellular recording of neuronal activity in slice preparations from neonatal rat medulla that generate respiratory rhythm in vitro to determine 1) whether pacemaker properties are present in pre-BötC and unique to respiratory neurons, 2) whether pacemaker properties are common to all respiratory neurons, and 3) the spatiotemporal patterns of pacemaker neuron activity. 2. Whole cell recordings from respiratory neurons verified that bathing the slices in a low-Ca2+/high-Mg2+ solution (low-Ca2+ solution) eliminated endogenous respiratory synaptic inputs and electrically evoked synaptic inputs. 3. Sixty-three neurons spontaneously generated rhythmic bursts of action potentials in low-Ca2+ solution. After we switched to control solution to reactivate the respiratory network, these neurons were classified on the basis of their spike discharge patterns relative to the respiratory cycle as: 1) inspiratory (I) neurons (n = 41), 2) tonic expiratory (tonic E) neurons (n = 4), and 3) tonic neurons (n = 18). 4. In other experiments we tested I and tonic E neurons identified first in control solution for bursting behavior in low-Ca2+ solution. Several I neurons (n = 5 of 33), but none of the tonic E neurons (n = 0 of 13), continued to burst rhythmically. 5. Bursting and nonbursting respiratory neurons were distributed throughout the ventrolateral reticular formation within the pre-BötC as well as in the ventral respiratory group (VRG) immediately caudal to the pre-BötC. 6. We conclude that subpopulations of VRG neurons in vitro have rhythmic bursting properties when synaptic transmission is abolished. Respiratory neurons, especially I neurons, were the most prevalent class of bursting cells. Only a small percentage of respiratory neurons, however, had pacemaker properties. These findings are consistent with the hypothesis that the respiratory oscillator includes specialized neurons with intrinsic oscillatory properties.
摘要
  1. 我们推测,前包钦格复合体(pre - BötC)中的起搏神经元构成了呼吸节律产生的核心。该假说的一个预测是,在没有突触传递的情况下,一些呼吸神经元的振荡行为可能会持续存在。在本研究中,我们使用细胞外记录新生大鼠延髓切片制备中神经元的活动,这些切片在体外产生呼吸节律,以确定:1)pre - BötC中是否存在起搏特性且是否为呼吸神经元所特有;2)起搏特性是否为所有呼吸神经元所共有;3)起搏神经元活动的时空模式。2. 对呼吸神经元的全细胞记录证实,将切片置于低钙/高镁溶液(低钙溶液)中浸泡可消除内源性呼吸突触输入和电诱发的突触输入。3. 63个神经元在低钙溶液中自发产生有节律的动作电位爆发。在我们切换到对照溶液以重新激活呼吸网络后,这些神经元根据其相对于呼吸周期的放电模式被分类为:1)吸气(I)神经元(n = 41);2)强直呼气(tonic E)神经元(n = 4);3)强直神经元(n = 18)。4. 在其他实验中,我们测试了在对照溶液中首先识别出的I神经元和强直E神经元在低钙溶液中的爆发行为。几个I神经元(33个中的5个)继续有节律地爆发,但没有一个强直E神经元(13个中的0个)如此。5. 爆发性和非爆发性呼吸神经元分布在前包钦格复合体内的腹外侧网状结构以及紧邻前包钦格复合体尾侧的腹侧呼吸组(VRG)中。6. 我们得出结论,当突触传递被消除时,体外培养的VRG神经元亚群具有节律性爆发特性。呼吸神经元,尤其是I神经元,是爆发性细胞中最常见的类型。然而,只有一小部分呼吸神经元具有起搏特性。这些发现与呼吸振荡器包括具有内在振荡特性的特殊神经元这一假说一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验