Gastonguay M R, Schwartz S L
Department of Pharmacology, Georgetown University School of Medicine, Washington, D.C. 20007.
Pharm Res. 1994 Dec;11(12):1825-8. doi: 10.1023/a:1018940122382.
Pharmacokinetic-pharmacodynamic modeling algorithms, in general, rely on hysteresis minimization techniques that assume time-invariant pharmacodynamics (constant biophase concentration-effect relationships). When time-variant pharmacodynamics are observed, a specific model for tolerance or sensitization is required. However, with single dosing, hysteresis that results from a time-variant biophase concentration-effect relationship cannot be distinguished from hysteresis caused by dispositional delays. This can lead to the inappropriate minimization of hysteresis. As an approach to this problem, simulated and real kinetic-dynamic data were analyzed with the pharmacodynamic system analysis program ATTRACT. The use of a multiple dosing regimen and this hysteresis minimization algorithm resulted in a simple diagnostic test to distinguish between dispositional effects of acute tolerance and sensitization.
一般来说,药代动力学-药效学建模算法依赖于滞后最小化技术,该技术假定药效学是时不变的(恒定的生物相浓度-效应关系)。当观察到药效学随时间变化时,就需要一个针对耐受性或敏化作用的特定模型。然而,在单次给药时,由随时间变化的生物相浓度-效应关系导致的滞后无法与由处置延迟引起的滞后区分开来。这可能导致对滞后的不适当最小化。作为解决这个问题的一种方法,使用药效学系统分析程序ATTRACT对模拟和实际的动力学-动态数据进行了分析。采用多剂量给药方案和这种滞后最小化算法,产生了一种简单的诊断测试,以区分急性耐受性和敏化作用的处置效应。