Suppr超能文献

一种用于听神经放电的新随机模型。

A new stochastic model for auditory-nerve discharge.

作者信息

Miller M I, Wang J

机构信息

Department of Electrical Engineering, Washington University, St. Louis, Missouri 63130.

出版信息

J Acoust Soc Am. 1993 Oct;94(4):2093-107. doi: 10.1121/1.407482.

Abstract

This paper investigates the mechanisms for history-dependent probability of eight-nerve discharge, which is modeled as the probability that the excitatory postsynaptic potential (EPSP) process crosses afferent membrane threshold, with the discharge history dependence due to the dependence of postsynaptic threshold voltage on time since previous action potential. The model parameters are the Poisson intensity alpha t of vesicle release, the duration epsilon and probability density PV(upsilon) of single-vesicle EPSP's, and the threshold voltage curve theta (tau) for spiking. It is proven that the infinitesimal conditional probabilities of discharge exhibit two distinct behaviors. The first is associated with the time tau = T D, exactly the time the neuron releases from absolute refractory where there is no intensity [theta(tau) = infinity, for tau < T D]. At this time the neuron has a nonzero probability of discharge [symbol:see text] (T D) = lim delta-->0 Pr(Nt,t+delta = 1/t - wNt = T D). The second regime corresponds to the time since previous spike being greater than dead time, tau > T D, during which time the intensity exists lambda t(tau) = lim delta-->0(1/delta) Pr(Nt,t+delta = 1/t - wNt = tau > T D). The fact that there is a nonzero probability of discharge following passage from the absolute refractory period predicts the nonmonotonic hazard intensity seen in high spontaneous neurons [R. P. Gaumond, Ph.D. thesis, Washington University, St. Louis (1980)] and high driven rate neurons. It is shown that for the lowest range of vesicle release intensities where the vesicle-release-rate/membrane-integration-time product alpha t epsilon small, the nonzero probability of discharge at a point is approximately equal to 0. The discharge intensity is dominated by a term linear in vesicle release intensity: lambda t(tau) approximately alpha t exp(-integral of t-epsilon t alpha sigma d sigma) integral of theta (tau) infinity Pv(upsilon)d upsilon. This is precisely the Siebert-Gaumond intensity product form with monotonic recovered discharge probability. At high vesicle release rates, such as for driven rate responses, the nonzero probability of discharging at a point becomes of nonsignificant size, and the intensity of discharge grows nonlinearly with alpha t, implying the product model does not hold. The model is demonstrated via the analysis of auditory nerve fibers from the cat.

摘要

本文研究了八神经放电的历史依赖性概率机制,该机制被建模为兴奋性突触后电位(EPSP)过程跨越传入膜阈值的概率,其放电历史依赖性源于突触后阈值电压对自上次动作电位以来时间的依赖性。模型参数包括囊泡释放的泊松强度α(t)、单个囊泡EPSP的持续时间ε和概率密度P_V(υ),以及用于产生动作电位的阈值电压曲线θ(τ)。结果证明,放电的无穷小条件概率表现出两种不同的行为。第一种行为与时间τ = T_D相关,即神经元从绝对不应期释放的时刻,此时不存在强度[对于τ < T_D,θ(τ) = ∞]。此时,神经元有非零的放电影概率符号:见文本 = lim_(δ→0) Pr(N_(t,t+δ)=1/t - wN_t = T_D)。第二种情况对应于自上次动作电位以来的时间大于不应期,即τ > T_D,在此期间存在强度λ_t(τ) = lim_(δ→0)(1/δ) Pr(N_(t,t+δ)=1/t - wN_t = τ > T_D)。从绝对不应期过后存在非零放电影概率这一事实预测了在高自发放电神经元[R. P. Gaumond,博士论文,华盛顿大学,圣路易斯(1980)]和高驱动率神经元中观察到的非单调危险强度。结果表明,对于囊泡释放强度的最低范围,即囊泡释放率/膜积分时间乘积α(t)ε较小的情况,某一点的非零放电影概率近似等于0。放电强度由囊泡释放强度的线性项主导:λ_t(τ) ≈ α(t) exp(-∫_(t - ε)^t α(σ)dσ) ∫_θ(τ)^∞ P_V(υ)dυ。这正是具有单调恢复放电影概率的西伯特 - 高蒙德强度乘积形式。在高囊泡释放率下,例如对于驱动率响应,某一点的非零放电影概率变得很小,并且放电强度随α(t)非线性增长,这意味着乘积模型不成立。通过对猫的听神经纤维的分析验证了该模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验