Suppr超能文献

增殖细胞核抗原/细胞周期蛋白和P-糖蛋白作为局部晚期乳腺癌的预后因素。一项免疫组织化学回顾性研究。

PCNA/cyclin and P-glycoprotein as prognostic factors in locally advanced breast cancer. An immunohistochemical, retrospective study.

作者信息

Botti G, Chiappetta G, D'Aiuto G, de Angelis E, De Matteis A, Montella M, Picone A, Cascione F

机构信息

Istituto Nazionale dei Tumori, Fondazione G. Pascale, Napoli, Italy.

出版信息

Tumori. 1993 Jun 30;79(3):214-8. doi: 10.1177/030089169307900312.

Abstract

AIMS AND BACKGROUND

The aim of the present study was to determine, retrospectively, whether the immunohistochemical expression of two biologic markers of aggressively, P-glycoprotein (P-gp) and PCNA/cyclin (PCNA), could be related to response to chemotherapy and prognosis in locally advanced breast cancer.

METHODS

PC 10 Mab was used to determine the proliferation index (PCNA) and C-219 Mab to determine P-gp in 25 locally advanced breast carcinomas subjected to preoperative chemotherapy with MDR-related drugs.

RESULTS

P-gp and PCNA were expressed in 76% and 100% of the tumors, respectively. No case of high P-gp expression was associated with good chemosensitivity, and all P-gp-negative cases showed the best chemotherapeutic response. P-gp and PCNA were both highly expressed in patients who developed local-regional or distant metastases. No recurrence was associated with a negative or low P-gp score.

CONCLUSIONS

Statistical analysis showed that high P-gp expression was related to a poor response to chemotherapy and a short disease-free survival. A high PCNA score was not found to be significant for predicting chemosensitivity or survival.

摘要

目的与背景

本研究旨在回顾性确定两种侵袭性生物学标志物,即P-糖蛋白(P-gp)和增殖细胞核抗原/细胞周期蛋白(PCNA)的免疫组化表达是否与局部晚期乳腺癌的化疗反应及预后相关。

方法

采用PC 10单克隆抗体检测25例接受与多药耐药相关药物术前化疗的局部晚期乳腺癌的增殖指数(PCNA),采用C-219单克隆抗体检测P-gp。

结果

P-gp和PCNA分别在76%和100%的肿瘤中表达。P-gp高表达病例均无良好的化疗敏感性,所有P-gp阴性病例化疗反应最佳。P-gp和PCNA在发生局部区域或远处转移的患者中均高表达。P-gp评分阴性或低者无复发情况。

结论

统计分析表明,P-gp高表达与化疗反应差及无病生存期短相关。未发现高PCNA评分对预测化疗敏感性或生存期有显著意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验