Volterra A, Trotti D, Tromba C, Floridi S, Racagni G
Center of Neuropharmacology, Institute of Pharmacological Sciences, University of Milan, Italy.
J Neurosci. 1994 May;14(5 Pt 1):2924-32. doi: 10.1523/JNEUROSCI.14-05-02924.1994.
Formation of reactive oxygen species and disfunction of the excitatory amino acid (EAA) system are thought to be key events in the development of neuronal injury in several acute and long-term neurodegenerative diseases. Recent evidence suggests that the two phenomena may be interdependent. The present study is aimed at exploring possible molecular mechanisms underlying oxygen radical-EAA interaction. Exposure of cortical astrocytic cultures to either xanthine + xanthine oxidase (X/XO), a free radical-generating system, or hydrogen peroxide (H2O2) results in a marked decrease of high-affinity glutamate transport. Within 10 min of X/XO application, uptake falls to approximately 60% of its control value. In parallel no detectable release of lactate dehydrogenase occurs. X/XO effect is abolished in the presence of a mixture of scavenger enzymes (superoxide dismutase+catalase) or by the disulfide-reducing agents glutathione and dithiothreitol (DTT), but not by lipophilic antioxidants or ascorbate. The time course of inhibition shows an almost linear decline of glutamate transport during cell exposure to free radicals, while upon their inactivation the decline stops but established inhibition persists for at least 1 hr. In this situation, application of DTT significantly restores transport function. These data suggest that free radicals inhibit glutamate uptake primarily by long-lasting oxidation of protein sulfhydryl (SH) groups. Chemical modifiers of free SH groups, such as p-chloromercuribenzoate and N-ethylmaleimide, also induce uptake inhibition. Na+/K+ ATPase is a known target of oxygen radicals and may be involved in glutamate uptake inhibition. Indeed, ouabain, a blocker of the pump, reduces uptake in astrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
活性氧的形成以及兴奋性氨基酸(EAA)系统功能障碍被认为是多种急性和长期神经退行性疾病中神经元损伤发展的关键事件。最近的证据表明,这两种现象可能相互依存。本研究旨在探索氧自由基与EAA相互作用背后可能的分子机制。将皮质星形胶质细胞培养物暴露于黄嘌呤+黄嘌呤氧化酶(X/XO,一种自由基生成系统)或过氧化氢(H2O2)中,会导致高亲和力谷氨酸转运显著下降。在应用X/XO后10分钟内,摄取量降至其对照值的约60%。与此同时,未检测到乳酸脱氢酶的释放。在存在清除酶混合物(超氧化物歧化酶+过氧化氢酶)或通过二硫键还原剂谷胱甘肽和二硫苏糖醇(DTT)时,X/XO的作用被消除,但脂溶性抗氧化剂或抗坏血酸则不能。抑制的时间进程显示,在细胞暴露于自由基期间,谷氨酸转运几乎呈线性下降,而在自由基失活后,下降停止,但已建立的抑制作用至少持续1小时。在这种情况下,应用DTT可显著恢复转运功能。这些数据表明,自由基主要通过蛋白质巯基(SH)基团的持久氧化来抑制谷氨酸摄取。游离SH基团的化学修饰剂,如对氯汞苯甲酸和N-乙基马来酰亚胺,也会诱导摄取抑制。Na+/K+ATP酶是已知的氧自由基靶点,可能参与谷氨酸摄取抑制。事实上,泵的阻滞剂哇巴因可降低星形胶质细胞中的摄取。(摘要截于250字)