Suppr超能文献

Somatostatin receptor-GTP binding regulatory protein-adenylyl cyclase system in hippocampal membranes of strychnine-treated rats.

作者信息

Puebla L, Arilla E

机构信息

Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain.

出版信息

Brain Res. 1994 Apr 25;644(1):59-66. doi: 10.1016/0006-8993(94)90347-6.

Abstract

Wistar rats were injected with either a non-convulsive dose (37.5 micrograms/100 g body weight (b.wt.), intravenously (i.v.)) or a convulsive dose (50 or 80 micrograms/100 g b.w.t, i.v.) of strychnine. Binding of 125I-Tyr11-somatostatin (125I-Tyr11-SS) to its specific receptors was measured in hippocampal membranes 15 min after strychnine injection at these three doses. The non-convulsive dose of strychnine did not affect binding of SS in the hippocampus whereas both convulsive doses decreased the number of specific SS receptors without influencing their apparent affinity. Somatostatin-like immunoreactivity (SSLI), SS-modulated adenylyl cyclase (AC) activity and the inhibitory guanine-nucleotide binding regulatory protein were also measured in rats treated with 80 micrograms/100 g b.wt. of strychnine. SSLI content remained stable. No significant differences were seen for the basal and forskolin (FK)-stimulated AC enzyme activities in the hippocampus of strychnine-treated rats when compared to the control group. The capacity of SS to inhibit basal and FK-stimulated AC activity in the hippocampus was significantly lower in the strychnine group than in the control group. The ability of the stable GTP analogue 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit FK-stimulated AC activity was also decreased in hippocampal membranes from strychnine-treated rats. These results suggest that the attenuated inhibition of AC by SS in hippocampal membranes from strychnine-treated rats may be caused by decreases in both Gi activity and in the number of SS receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验