Schnecko A, Witte K, Bohl J, Ohm T, Lemmer B
Zentrum der Pharmakologie, Johann Wolfgang Goethe-Universität, Frankfurt, Germany.
Brain Res. 1994 May 2;644(2):291-6. doi: 10.1016/0006-8993(94)91692-6.
Adenylyl cyclase (AC) activity was studied in post mortem hippocampus and cerebellum from eight patients with Alzheimer's disease/senile dementia of the Alzheimer type (AD/SDAT) and seven non-demented control patients. AC was stimulated via stimulatory guanine nucleotide binding proteins (Gs) using guanosine triphosphate (GTP) and GppNHp (both 10(-4) M) or directly with either forskolin (10(-4) M) or Mn2+ (10(-2) M). Inhibition of AC via A1-receptors was performed with N6-cyclohexyladenosine (CHA) under basal conditions and in the presence of forskolin (10(-5) M). In both brain regions AC activity was significantly reduced in AD/SDAT when compared to controls. Under basal conditions and after stimulation via Gs mean reduction in hippocampus and cerebellum was 47.7% and 58.2%, respectively. The reduction was less pronounced after direct activation of the AC, amounting to 21.8% in hippocampus and 28.1% in cerebellum. CHA inhibited basal and forskolin-stimulated AC concentration-dependently by about 20% (basal) and 30% (forskolin). Inhibition by CHA was similar in hippocampus and cerebellum and tended to be more pronounced in AD/SDAT than in controls. Since the reduction of AC activity in AD/SDAT is greater after stimulation via Gs than after direct activation of the catalytic subunit, we suggest that both Gs and the catalytic subunit seem to be impaired. The fact that CHA-mediated inhibition of AC is not significantly different in AD/SDAT and controls, indicates that in contrast to Gs-, inhibitory G-proteins (Gi) coupling to AC remains intact in Alzheimer's disease.