Suppr超能文献

Adenylyl cyclase activity in Alzheimer's disease brain: stimulatory and inhibitory signal transduction pathways are differently affected.

作者信息

Schnecko A, Witte K, Bohl J, Ohm T, Lemmer B

机构信息

Zentrum der Pharmakologie, Johann Wolfgang Goethe-Universität, Frankfurt, Germany.

出版信息

Brain Res. 1994 May 2;644(2):291-6. doi: 10.1016/0006-8993(94)91692-6.

Abstract

Adenylyl cyclase (AC) activity was studied in post mortem hippocampus and cerebellum from eight patients with Alzheimer's disease/senile dementia of the Alzheimer type (AD/SDAT) and seven non-demented control patients. AC was stimulated via stimulatory guanine nucleotide binding proteins (Gs) using guanosine triphosphate (GTP) and GppNHp (both 10(-4) M) or directly with either forskolin (10(-4) M) or Mn2+ (10(-2) M). Inhibition of AC via A1-receptors was performed with N6-cyclohexyladenosine (CHA) under basal conditions and in the presence of forskolin (10(-5) M). In both brain regions AC activity was significantly reduced in AD/SDAT when compared to controls. Under basal conditions and after stimulation via Gs mean reduction in hippocampus and cerebellum was 47.7% and 58.2%, respectively. The reduction was less pronounced after direct activation of the AC, amounting to 21.8% in hippocampus and 28.1% in cerebellum. CHA inhibited basal and forskolin-stimulated AC concentration-dependently by about 20% (basal) and 30% (forskolin). Inhibition by CHA was similar in hippocampus and cerebellum and tended to be more pronounced in AD/SDAT than in controls. Since the reduction of AC activity in AD/SDAT is greater after stimulation via Gs than after direct activation of the catalytic subunit, we suggest that both Gs and the catalytic subunit seem to be impaired. The fact that CHA-mediated inhibition of AC is not significantly different in AD/SDAT and controls, indicates that in contrast to Gs-, inhibitory G-proteins (Gi) coupling to AC remains intact in Alzheimer's disease.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验