Suppr超能文献

Regulation of lipogenic enzyme and phosphoenolpyruvate carboxykinase gene expression in cultured white adipose tissue. Glucose and insulin effects are antagonized by cAMP.

作者信息

Foufelle F, Gouhot B, Perdereau D, Girard J, Ferre P

机构信息

Centre de Recherches sur l'Endocrinologie Moléculaire et le Développement, CNRS, Meudon-Bellevue, France.

出版信息

Eur J Biochem. 1994 Aug 1;223(3):893-900. doi: 10.1111/j.1432-1033.1994.tb19066.x.

Abstract

In cultured adipose tissue of suckling rats, glucose alone is able to induce the appearance of fatty-acid synthase and acetyl-CoA carboxylase mRNA by a mechanism involving glucose-6-phosphate accumulation; insulin alone has no effect but potentiates the effect of glucose. In the present study, we have analysed in cultured adipose tissue the effects of other hormones on the expression of these enzymes as well as on phosphoenolpyruvate carboxykinase. Triiodothyronine has only a marginal effect on fatty-acid synthase expression, in the absence or presence of glucose and insulin. A synthetic glucocorticoid, dexamethasone, opposes the inductive effect of glucose and insulin on fatty-acid synthase expression but increases the expression of phosphoenolpyruvate carboxykinase. A beta-agonist, isoproterenol totally inhibits the inductive effect of glucose and insulin on acetyl-CoA carboxylase and fatty-acid synthase expression whereas it increases the expression of phosphoenolpyruvate carboxykinase. Similarly, glucagon and cAMP have antagonistic effects on glucose and insulin-induced fatty-acid synthase expression. These inhibitory effects cannot be explained only by a reduction in glucose-6-phosphate concentration. We conclude that, in adipose tissue, dexamethasone and cAMP-generating hormones are negative regulators of lipogenic enzyme expression. Finally, the regulation of phosphoenolpyruvate carboxykinase expression in adipose tissue is similar to that found in the liver, i.e. inhibition by insulin and glucose and activation by glucocorticoids and cAMP.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验