Suppr超能文献

cAMP can raise or lower cardiac actomyosin ATPase activity depending on alpha-adrenergic activity.

作者信息

McClellan G, Weisberg A, Winegrad S

机构信息

Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6085.

出版信息

Am J Physiol. 1994 Aug;267(2 Pt 2):H431-42. doi: 10.1152/ajpheart.1994.267.2.H431.

Abstract

Adenosine 3',5'-cyclic monophosphate (cAMP) or beta-adrenergic stimulation has been shown to increase actomyosin adenosinetriphosphatase (ATPase) activity in cardiac muscle. Because the major catecholamine transmitters have both alpha- and beta-adrenergic activity, the possibility of a role for alpha-adrenergic stimulation in the regulation of ATPase activity has been investigated. Histochemical measurement of actomyosin ATPase activity in quickly frozen rat hearts has been used as the assay of enzymatic function of the contractile proteins. The dose-response curve of ATPase activity to cAMP shows an increase in ATPase activity at a threshold concentration of 0.01 microM, a peak effect at 0.5-1.0 microM, and a decline beyond 1.5 microM to a level below control at 10 microM cAMP. Kinetic studies varying ATP concentration from 0.5 to 10 mM indicated the existence of multiple forms of actomyosin ATPase activity in the absence of cAMP and only one form with a higher maximum velocity in the presence of 1 microM cAMP. Apparently cAMP raises the enzymatic activity of the individual actomyosin molecule rather than increasing the number of active molecules. The addition of an alpha-adrenergic blocker had no significant effect in the absence of added cAMP, but in the presence of the cyclic nucleotide, 1 microM prazosin always produced a negative effect on ATPase activity. Over the entire range of 0.01-10 microM, cAMP lowered ATPase activity when the alpha-adrenergic antagonist was present. The integrity of the cAMP regulatory system was sensitive to the tissue oxygen tension at the time the heart was quickly frozen. At certain oxygen tension, the stimulatory component of the cAMP regulation was observed without any inhibitory component, suggesting that there are two relatively independent parts of the regulatory mechanism, an inhibitory and a stimulatory. In the presence of gamma-labeled [32P]ATP, 32P was incorporated into several proteins, including the inhibitory subunit of troponin (TNI), C protein, and the regulatory light chain of myosin. cAMP (1 microM) caused an increase in 32P labeling of TNI and C protein. The addition of prazosin with cAMP caused a decrease in the overall level of phosphorylation with specific dephosphorylation of C protein and TNI, the former to a degree similar to the decrease in actomyosin ATPase activity, the latter to a greater degree. These results indicate that alpha-adrenergic activity modulates the balance between kinase and phosphatase activity in the presence of cAMP, probably by inhibiting phosphatase activity.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验