Suppr超能文献

锰和铁在大肠杆菌中锰超氧化物歧化酶生物合成调控中的作用。

Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli.

作者信息

Hassan H M, Schrum L W

机构信息

Department of Microbiology, North Carolina State University, Raleigh 27695-7615.

出版信息

FEMS Microbiol Rev. 1994 Aug;14(4):315-23. doi: 10.1111/j.1574-6976.1994.tb00105.x.

Abstract

Aerobic life-style offers both benefits and risks to living cells. The major risk comes from the formation of reactive oxygen intermediates (i.e. superoxide radical, O2-; hydrogen peroxide, H2O2; and hydroxyl radical, OH.) during normal oxygen metabolism. However, living cells are able to cope with oxygen toxicity by virtue of a unique set of antioxidant enzymes that scavenge O2- and H2O2, and prevent the formation OH.. Superoxide dismutases (SODs; EC 1.15.1.1) are metalloenzymes essential for aerobic survival. Escherichia coli contains two forms of this enzyme: an iron-containing enzyme (FeSOD) and a manganese-containing enzyme (MnSOD). In E. coli, MnSOD biosynthesis is under rigorous control. The enzyme is induced in response to a variety of environmental stress conditions including exposure to oxygen, redox cycling compounds such as paraquat which exacerbate the level of intracellular superoxide radicals, iron chelation (i.e. iron deprivation), and oxidants. A model for the regulation of the MnSOD has been proposed in which the MnSOD gene (sodA) is negatively regulated at the level of transcription by an iron-containing redox-sensitive repressor protein. The effect of iron-chelation most probably results in removal of the iron necessary for repressor activity. Recent studies have shown that sodA expression is regulated by three iron-dependent regulatory proteins, Fur (ferric uptake regulation), Fnr (fumarate nitrate regulation) and SoxR (superoxide regulon), and by the ArcA/ArcB (aerobic respiration control) system. The potential Fur-, Fnr- and ArcA-binding sites in the sodA promoter region have been identified by using different cis-acting regulatory mutations that caused anaerobic derepression of the gene.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

需氧生活方式对活细胞既有益处也有风险。主要风险来自于正常氧代谢过程中活性氧中间体的形成(即超氧阴离子自由基O₂⁻、过氧化氢H₂O₂和羟基自由基OH·)。然而,活细胞能够借助一组独特的抗氧化酶来应对氧毒性,这些酶可清除O₂⁻和H₂O₂,并防止OH·的形成。超氧化物歧化酶(SODs;EC 1.15.1.1)是需氧生存所必需的金属酶。大肠杆菌含有这种酶的两种形式:含铁酶(FeSOD)和含锰酶(MnSOD)。在大肠杆菌中,MnSOD的生物合成受到严格控制。该酶在多种环境应激条件下被诱导,包括暴露于氧气、百草枯等氧化还原循环化合物(会加剧细胞内超氧阴离子自由基水平)、铁螯合(即缺铁)和氧化剂。已提出一种MnSOD调控模型,其中MnSOD基因(sodA)在转录水平上受到一种含铁的氧化还原敏感阻遏蛋白的负调控。铁螯合的作用很可能导致去除阻遏活性所需的铁。最近的研究表明,sodA的表达受三种铁依赖性调节蛋白Fur(铁摄取调节)、Fnr(延胡索酸硝酸盐调节)和SoxR(超氧化物调节子)以及ArcA/ArcB(有氧呼吸控制)系统的调控。通过使用导致该基因厌氧去阻遏的不同顺式作用调节突变,已确定了sodA启动子区域中潜在的Fur -、Fnr - 和ArcA结合位点。(摘要截短于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验