Suppr超能文献

大肠杆菌适应有氧环境的细胞与分子生理学

Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments.

作者信息

Iuchi S, Weiner L

机构信息

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

J Biochem. 1996 Dec;120(6):1055-63. doi: 10.1093/oxfordjournals.jbchem.a021519.

Abstract

Upon exposure to oxygen, Escherichia coli increases the expression of enzymes essential for aerobic respiration, such as components of the TCA cycle and terminal oxidase complexes. This increase requires the elimination of repression mediated by the Arc regulatory system under anaerobic conditions. Coordinately, the synthesis of enzymes that function in anaerobic processes such as fermentation decreases, partly due to the inactivation of the transcription factor Fnr. E. coli is thus able to adjust the levels of respiratory enzymes to fit its environmental circumstances, and in this case, reduces the production of the less energy efficient fermentation enzymes in favor of the aerobic pathways. In contrast to the advantage in energy production, aerobiosis brings a disadvantage to E. coli: the production of reactive oxygen species (ROS), i.e. superoxide anion radical (O2.-), hydrogen peroxide (H2O2), and hydroxyl radical (.OH). These byproducts of aerobic respiration damage many biological molecules, including DNA, proteins, and lipids. To alleviate the toxicity of these compounds, E. coli induces the synthesis of protective enzymes, such as Mn-dependent superoxide dismutase (SodA) and catalase I (HP I), and this induction is controlled by the regulatory proteins SoxRS, OxyR, and ArcAB. Thus, ArcAB, Fnr, SoxRS, and OxyR function in concert so that E. coli can optimize its energy production and growth rate. Fnr and SoxRS are cytoplasmic, DNA-binding proteins, and these regulatory systems utilize iron-sulfur clusters as cofactors which may directly sense the redox environment. OxyR is also a cytoplasmic, DNA-binding protein, and appears to respond to redox potential through the oxidation state of a specific cysteine residue. In the ArcAB system (which belongs to the family of two-component regulatory systems), ArcB, a membrane protein, functions as the sensor, and ArcA, a DNA-binding protein, directly controls target gene expression. Under anaerobic conditions, ArcB undergoes autophosphorylation and transphosphorylates ArcA, stimulating ArcA's DNA-binding activity. During aerobic growth, the transphosphorylation of ArcA does not occur. In this signal transduction mechanism, the ArcB C-terminal or "receiver" domain plays a critical role; that is, it stimulates or abolishes the transphosphorylation depending on the metabolic state of the cell, which in turn is influenced by the availability of oxygen. E. coli thus employs at least four global regulatory systems which monitor the cellular oxidative/metabolic conditions, and adjust the expression of more than 70 operons to give the organism a better aerobic life.

摘要

暴露于氧气中时,大肠杆菌会增加有氧呼吸所需酶的表达,例如三羧酸循环的组分和末端氧化酶复合物。这种增加需要消除厌氧条件下由Arc调节系统介导的抑制作用。同时,在厌氧过程(如发酵)中起作用的酶的合成减少,部分原因是转录因子Fnr失活。因此,大肠杆菌能够调节呼吸酶的水平以适应其环境状况,在这种情况下,减少能量效率较低的发酵酶的产生,转而支持有氧途径。与能量产生方面的优势相反,需氧生活给大肠杆菌带来了一个劣势:活性氧(ROS)的产生,即超氧阴离子自由基(O2.-)、过氧化氢(H2O2)和羟基自由基(.OH)。这些有氧呼吸的副产物会损害许多生物分子,包括DNA、蛋白质和脂质。为了减轻这些化合物的毒性,大肠杆菌诱导合成保护性酶,如锰依赖性超氧化物歧化酶(SodA)和过氧化氢酶I(HP I),并且这种诱导由调节蛋白SoxRS、OxyR和ArcAB控制。因此,ArcAB、Fnr、SoxRS和OxyR协同发挥作用,以便大肠杆菌能够优化其能量产生和生长速率。Fnr和SoxRS是细胞质中的DNA结合蛋白,并且这些调节系统利用铁硫簇作为辅因子,铁硫簇可能直接感知氧化还原环境。OxyR也是一种细胞质中的DNA结合蛋白,似乎通过特定半胱氨酸残基的氧化状态对氧化还原电位作出反应。在ArcAB系统(属于双组分调节系统家族)中,膜蛋白ArcB作为传感器,而DNA结合蛋白ArcA直接控制靶基因的表达。在厌氧条件下,ArcB进行自身磷酸化并将磷酸基团转移至ArcA,刺激ArcA的DNA结合活性。在有氧生长期间,ArcA的磷酸基团转移不会发生。在这种信号转导机制中,ArcB的C末端或“受体”结构域起着关键作用;也就是说,它根据细胞的代谢状态刺激或消除磷酸基团转移,而细胞的代谢状态又受氧气可用性的影响。因此,大肠杆菌至少采用四种全局调节系统来监测细胞的氧化/代谢状况,并调节70多个操纵子的表达,以使生物体更好地适应需氧生活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验