Baker C S, Slade R W, Bannister J L, Abernethy R B, Weinrich M T, Lien J, Urban J, Corkeron P, Calmabokidis J, Vasquez O
Department of Zoology, University of Hawaii, Honolulu 96822.
Mol Ecol. 1994 Aug;3(4):313-27. doi: 10.1111/j.1365-294x.1994.tb00071.x.
The genetic structure of humpback whale populations and subpopulation divisions is described by restriction fragment length analysis of the mitochondrial (mt) DNA from samples of 230 whales collected by biopsy darting in 11 seasonal habitats representing six subpopulations, or 'stocks', world-wide. The hierarchical structure of mtDNA haplotype diversity among population subdivisions is described using the analysis of molecular variance (AMOVA) procedure, the analysis of gene identity, and the genealogical relationship of haplotypes as constructed by parsimony analysis and distance clustering. These analyses revealed: (i) significant partitioning of world-wide genetic variation among oceanic populations, among subpopulations or 'stocks' within oceanic populations and among seasonal habitats within stocks; (ii) fixed categorical segregation of haplotypes on the south-eastern Alaska and central California feeding grounds of the North Pacific; (iii) support for the division of the North Pacific population into a central stock which feeds in Alaska and winters in Hawaii, and an eastern or 'American' stock which feeds along the coast of California and winters near Mexico; (iv) evidence of genetic heterogeneity within the Gulf of Maine feeding grounds and among the sampled feeding and breeding grounds of the western North Atlantic; and (v) support for the historical division between the Group IV (Western Australia) and Group V (eastern Australia, New Zealand and Tonga) stocks in the Southern Oceans. Overall, our results demonstrate a striking degree of genetic structure both within and between oceanic populations of humpback whales, despite the nearly unlimited migratory potential of this species. We suggest that the humpback whale is a suitable demographic and genetic model for the management of less tractable species of baleen whales and for the general study of gene flow among long-lived, mobile vertebrates in the marine ecosystem.
通过对230头鲸鱼样本的线粒体(mt)DNA进行限制性片段长度分析,描述了座头鲸种群的遗传结构和亚种群划分。这些样本是在代表六个亚种群或“种群”的11个季节性栖息地,通过活检 darting 在全球范围内收集的。使用分子方差分析(AMOVA)程序、基因同一性分析以及通过简约分析和距离聚类构建的单倍型谱系关系,描述了种群细分中mtDNA单倍型多样性的层次结构。这些分析揭示了:(i)全球遗传变异在海洋种群之间、海洋种群内的亚种群或“种群”之间以及种群内的季节性栖息地之间存在显著划分;(ii)在北太平洋阿拉斯加东南部和加利福尼亚中部觅食地,单倍型存在固定的分类隔离;(iii)支持将北太平洋种群分为在阿拉斯加觅食并在夏威夷越冬 的中央种群,以及在加利福尼亚海岸觅食并在墨西哥附近越冬的东部或“美国”种群;(iv)缅因湾觅食地内以及北大西洋西部采样的觅食和繁殖地之间存在遗传异质性的证据;(v)支持南大洋中第四组(西澳大利亚)和第五组(东澳大利亚、新西兰和汤加)种群之间的历史划分。总体而言,我们的结果表明,尽管座头鲸具有几乎无限的迁徙潜力,但在其海洋种群内部和之间仍存在显著程度的遗传结构。我们建议,座头鲸是管理较难处理的须鲸物种以及研究海洋生态系统中长寿、移动脊椎动物之间基因流动的合适的种群统计学和遗传学模型。