Denardo S J, Talbot L, Hargrave V K, Fitzgerald P J, Selfridge A R, Yock P G
Cardiovascular Research Institute, University of California, San Francisco 94143.
IEEE Trans Biomed Eng. 1994 Jul;41(7):635-48. doi: 10.1109/10.301730.
Abnormal arterial blood flow patterns have been implicated in the evolution of various vascular disease processes. Intravascular ultrasound techniques using the pulsed wave Doppler catheter offer the opportunity to characterize these abnormal flow patterns. We have developed a mathematical model that predicts the first two moments of the Doppler spectrum obtained using a Doppler catheter based on the distribution of ultrasonic beam power and velocity profile of fluid flow with an arbitrary distribution of flow disturbances. A scaled-up, in vitro experimental arterial system was used to confirm the validity of the model. Comparison of the predicted first two moments of the Doppler spectrum to the experimental values in this system demonstrated that the distribution of beam power significantly affects the magnitude of the first two moments. Additionally, both velocity gradient and velocity fluctuation broadening effects play prominent roles in determining the magnitude of the second moment. These phenomena must therefore be considered when evaluating in vivo Doppler spectra used for the characterization of abnormal flow patterns.
异常的动脉血流模式与各种血管疾病过程的发展有关。使用脉冲波多普勒导管的血管内超声技术为表征这些异常血流模式提供了机会。我们开发了一个数学模型,该模型基于超声束功率分布和具有任意流动扰动分布的流体流动速度剖面,预测使用多普勒导管获得的多普勒频谱的前两个矩。一个放大的体外实验动脉系统被用来证实该模型的有效性。将预测的多普勒频谱前两个矩与该系统中的实验值进行比较表明,束功率分布显著影响前两个矩的大小。此外,速度梯度和速度波动展宽效应在确定第二矩的大小方面都起着重要作用。因此,在评估用于表征异常血流模式的体内多普勒频谱时,必须考虑这些现象。