Sams-Dodd F, Capranica R R
Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853.
Hear Res. 1994 Jun 1;76(1-2):16-30. doi: 10.1016/0378-5955(94)90083-3.
A systematic study of the encoding properties of 146 auditory nerve fibers in the Tokay gecko (Gekko gecko, L) was conducted with respect to pure tones and two-tone rate suppression. Our aim was a comprehensive understanding of the peripheral encoding of simple tonal stimuli and their representation by temporal synchronization and spike rate codes as a prelude to subsequent studies of more complex signals. Auditory nerve fibers in the Tokay gecko have asymmetrical, V-shaped excitatory tuning curves with best excitatory frequencies that range from 200-5100 Hz and thresholds between 4-35 dB SPL. A low-frequency excitatory 'tail' extends far into the low-frequency range and two-tone suppression is present only on the high frequency side of the tuning curve. The response properties to pure tones at different loci within a tuning curve can differ greatly, due to evident interactions between the representations of temporal, spectral and intensity stimulus features. For frequencies below 1250 Hz, pure tones are encoded by both temporal synchronization and spike rate codes, whereas above this frequency a fiber's ability to encode the waveform periodicity is lost and only a rate code predominates. These complimentary representations within a tuning curve raise fundamental issues which need to be addressed in interpreting how more complex, bioacoustic communication signals are represented in the peripheral and central auditory system. And since auditory nerve fibers in the Tokay gecko exhibit tonal sensitivity, selective frequency tuning, and iso-intensity and iso-frequency contours that seem comparable to similar measures in birds and mammals, these issues likely apply to most higher vertebrates in general. The simpler wiring diagram of the reptilian auditory system, coupled with the Tokay gecko's remarkable vocalizations, make this animal a good evolutionary model in which to experimentally explore the encoding of more complex sounds of communicative significance.