Suppr超能文献

当被DNA发夹螺旋终止时,T4 DNA聚合酶全酶的快速解离。一种关于每个冈崎片段终止后聚合酶释放的模型。

The rapid dissociation of the T4 DNA polymerase holoenzyme when stopped by a DNA hairpin helix. A model for polymerase release following the termination of each Okazaki fragment.

作者信息

Hacker K J, Alberts B M

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448.

出版信息

J Biol Chem. 1994 Sep 30;269(39):24221-8.

PMID:7929078
Abstract

We have examined the molecular mechanism that enables the T4 bacteriophage DNA polymerase holoenzyme to synthesize DNA processively on the leading strand of the replication fork for many minutes, while allowing an identical holoenzyme on the lagging strand to recycle from one Okazaki fragment to the next in less than 4 s. We use a perfect hairpin helix of 15 base pairs to mimic the encounter of the polymerase with the end of a previously synthesized Okazaki fragment. Polymerase dissociation is monitored during the stall at the hairpin helix by the addition of excess T4 gene 32 protein (SSB protein), which rapidly melts the helix and allows a stalled polymerase molecule to continue DNA synthesis. In the accompanying paper, we show that polymerase holoenzyme dissociation is slow (half-life of 2.5 min) when this enzyme is stalled by nucleotide omission (Hacker, K. J., and Alberts, B. M. (1994) J. Biol. Chem. 269, 24209-24220). In contrast, the holoenzyme dissociates with a half-life of 1 s after hitting the hairpin helix, a rate sufficient to allow efficient polymerase recycling on the lagging strand in vivo. We conclude that, upon completing each Okazaki fragment, the holoenzyme senses an encounter with duplex DNA and then switches to a state that rapidly dissociates.

摘要

我们研究了一种分子机制,该机制使T4噬菌体DNA聚合酶全酶能够在前导链上持续合成DNA达数分钟之久,而与此同时,位于滞后链上的相同全酶却能在不到4秒的时间内从一个冈崎片段循环至下一个冈崎片段。我们使用一个由15个碱基对组成的完美发夹螺旋结构来模拟聚合酶与先前合成的冈崎片段末端的相遇。通过添加过量的T4基因32蛋白(单链结合蛋白)来监测在发夹螺旋处的停滞过程中聚合酶的解离情况,该蛋白能迅速解开螺旋,使停滞的聚合酶分子继续进行DNA合成。在随附的论文中,我们表明,当这种酶因核苷酸缺失而停滞时(哈克,K. J.,和阿尔伯茨,B. M.(1994年)《生物化学杂志》269卷,24209 - 24220页),聚合酶全酶的解离速度很慢(半衰期为2.5分钟)。相比之下,全酶在碰到发夹螺旋后以1秒的半衰期解离,这一速度足以使聚合酶在体内滞后链上高效循环利用。我们得出结论,在完成每个冈崎片段的合成后,全酶能感知到与双链DNA的相遇,然后切换到一种迅速解离的状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验