Suppr超能文献

基于圆二色光谱法的蛋白质二级结构。将变量选择原理、聚类分析与神经网络、岭回归和自洽方法相结合。

Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods.

作者信息

Sreerama N, Woody R W

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523.

出版信息

J Mol Biol. 1994 Sep 30;242(4):497-507. doi: 10.1006/jmbi.1994.1597.

Abstract

Different approaches to improve the analysis of protein secondary structure from circular dichroism spectra are compared. Grouping proteins based on the similarity of their circular dichroism spectra, using cluster analysis methods, was utilized as a new way of implementing variable selection. The performance of three basic methods (neural networks, ridge regression and singular value decomposition) was evaluated in combination with three approaches to improve the predictions; namely, variable selection, cluster analysis and the self-consistent method. Cluster analysis performed on the basis set proteins resulted in three clusters, subanalyses of which provide a new way of performing variable selection. The neural network with two hidden layers performed better than that with one hidden layer and was combined with variable selection. Inclusion of the variable selection principle improved the performance of all three basic methods. While the neural network method performed slightly better than the other two methods at the basic level, the inclusion of variable selection led to similar performance indices for all three methods.

摘要

比较了从圆二色光谱改进蛋白质二级结构分析的不同方法。利用聚类分析方法,根据蛋白质圆二色光谱的相似性对蛋白质进行分组,作为一种实施变量选择的新方法。结合三种改进预测的方法,即变量选择、聚类分析和自洽方法,评估了三种基本方法(神经网络、岭回归和奇异值分解)的性能。对基础集蛋白质进行的聚类分析产生了三个簇,对其进行的子分析提供了一种进行变量选择的新方法。具有两个隐藏层的神经网络比具有一个隐藏层的神经网络表现更好,并与变量选择相结合。变量选择原则的纳入提高了所有三种基本方法的性能。虽然在基础水平上神经网络方法的表现略优于其他两种方法,但变量选择的纳入导致所有三种方法的性能指标相似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验