Goetzl E J
Am J Pathol. 1976 Nov;85(2):419-36.
Eosinophil migration toward a concentration gradient of a chemotactic factor is regulated at four levels. Diverse immunologic pathways generate stimuli with eosinophil chemotactic activity, including the complement products C5a and a fragment of C3a and the peptide products of mast cells and basophils activated by IgE-mediated reactions, such as eosinophil chemotactic factor of anaphylaxis (ECF-A) and other oligopeptides. The intrinsic preferential leukocyte activity of the chemotactic stimuli represents the second level of modulation, with ECF-A and other mast cell-derived peptides exhibiting the most selective action on eosinophils. The third level of control of eosinophil chemotaxis is composed of inactivators and inhibitors of chemotactic stimuli and is exemplified by degradation of C5a by anaphylatoxin inactivator or chemotactic factor inactivator and of ECF-A by carboxypeptidase-A or aminopeptidases. The activity of ECF-A is uniquely suppressed by equimolar quantities of its NH2- terminal tripeptide substituent, presumably by eosinophil membrane receptor competition. Factors comprising the fourth level of regulation, which alter eosinophil responsiveness to chemotactic stimuli, include the chemotactic factors themselves, through deactivation; nonchemotactic inhibitors such as the COOH-terminal tripeptide substituent of ECF-A, the neutrophil-immobilizing factor (NIF), the phagocytosis-enhancing factor Thr-Lys-Pro-Arg, and histamine at concentrations greater than 400 ng/ml; and nonchemotactic enhancing principles represented by ascorbate and by histamine at concentrations of 30 ng/ml or less. Local concentrations of eosinophils called to and immobilized at the site of a hypersenitivity reaction may express their regulatory functions by degrading the chemical mediators elaborated including histamine, slow-reacting substance of anaphylaxis (SRS-A), and platelet-activating factor (PAF) by way of their content of histaminase, arylsulfatase B, and phospholipase D, respectively. Immunologic pathways may thus provide the capability for early and specific host defense reactions with a later influx of eosinophils preventing irreversible local tissue alterations or distant organ effects.
嗜酸性粒细胞向趋化因子浓度梯度的迁移在四个水平上受到调节。多种免疫途径产生具有嗜酸性粒细胞趋化活性的刺激物,包括补体产物C5a和C3a的一个片段,以及由IgE介导的反应激活的肥大细胞和嗜碱性粒细胞的肽产物,如过敏反应嗜酸性粒细胞趋化因子(ECF-A)和其他寡肽。趋化刺激物固有的优先白细胞活性代表了调节的第二个水平,其中ECF-A和其他肥大细胞衍生的肽对嗜酸性粒细胞表现出最具选择性的作用。嗜酸性粒细胞趋化性控制的第三个水平由趋化刺激物的失活剂和抑制剂组成,例如过敏毒素失活剂或趋化因子失活剂对C5a的降解,以及羧肽酶A或氨肽酶对ECF-A的降解。等摩尔量的其NH2末端三肽取代基可独特地抑制ECF-A的活性,推测是通过嗜酸性粒细胞膜受体竞争。构成调节第四水平的因素,即改变嗜酸性粒细胞对趋化刺激物反应性的因素,包括趋化因子本身通过失活;非趋化抑制剂,如ECF-A的COOH末端三肽取代基、中性粒细胞固定因子(NIF)、吞噬增强因子Thr-Lys-Pro-Arg以及浓度大于400 ng/ml的组胺;以及由抗坏血酸和浓度为30 ng/ml或更低的组胺代表的非趋化增强原理。在超敏反应部位被召集并固定的嗜酸性粒细胞的局部浓度,可通过分别利用其组胺酶、芳基硫酸酯酶B和磷脂酶D的含量来降解所产生的化学介质,包括组胺、过敏反应慢反应物质(SRS-A)和血小板活化因子(PAF),从而发挥其调节功能。因此,免疫途径可以提供早期特异性宿主防御反应的能力,随后嗜酸性粒细胞的流入可防止局部组织发生不可逆改变或远处器官受到影响。