Suppr超能文献

细菌脲酶:结构、表达调控及其在致病过程中的作用

Bacterial ureases: structure, regulation of expression and role in pathogenesis.

作者信息

Collins C M, D'Orazio S E

机构信息

Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101.

出版信息

Mol Microbiol. 1993 Sep;9(5):907-13. doi: 10.1111/j.1365-2958.1993.tb01220.x.

Abstract

The nickel metalloenzyme urease catalyses the hydrolysis of urea to ammonia and carbamate, and thus generates the preferred nitrogen source of many organisms. When produced by bacterial pathogens in either the urinary tract or the gastroduodenal region, urease acts as a virulence factor. At both sites of infection urease is known to enhance the survival of the infecting bacteria. Ammonia resulting from the action of urease is believed to increase the pH of the environment to one more favourable for growth, and to injure the surrounding epithelial cells. In addition, in the urinary tract urease activity can result in the formation of urinary calculi. Bacterial urease gene clusters contain from seven to nine genes depending upon the species. These genes encode the urease structural subunits and accessory polypeptides involved in the biosynthesis of the nickel metallocentre. So far, three distinct mechanisms of urease gene expression have been described for ureolytic bacteria. Some species constitutively produce urease; some species produce urease only if urea is present in the growth medium; and some species produce urease only during nitrogen-limiting growth conditions. For either the urea-inducible genes or the nitrogen-regulated genes transcription appears to be positively regulated. In the nitrogen-regulated systems, urease gene expression requires Nac (nitrogen assimilation control), a member of the LysR family of transcriptional activators. Urea dependent expression of urease requires UreR (urease regulator), a member of the AraC family of transcriptional activators. An evolutionary tree for urease genes of eight bacterial species is proposed.

摘要

镍金属酶脲酶催化尿素水解为氨和氨基甲酸酯,从而产生许多生物体偏好的氮源。当由尿路或胃十二指肠区域的细菌病原体产生时,脲酶作为一种毒力因子起作用。在这两个感染部位,已知脲酶可提高感染细菌的存活率。脲酶作用产生的氨被认为会使环境pH值升高到更有利于生长的水平,并损伤周围的上皮细胞。此外,在尿路中,脲酶活性可导致尿路结石的形成。细菌脲酶基因簇根据物种不同包含7至9个基因。这些基因编码参与镍金属中心生物合成的脲酶结构亚基和辅助多肽。到目前为止,已描述了脲酶分解细菌脲酶基因表达的三种不同机制。一些物种组成性地产生脲酶;一些物种仅在生长培养基中存在尿素时才产生脲酶;还有一些物种仅在氮限制生长条件下产生脲酶。对于尿素诱导型基因或氮调节型基因,转录似乎都是正调控的。在氮调节系统中,脲酶基因表达需要Nac(氮同化控制),它是转录激活因子LysR家族的成员。脲酶的尿素依赖性表达需要UreR(脲酶调节因子),它是转录激活因子AraC家族的成员。本文提出了8种细菌脲酶基因的进化树。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验