Suppr超能文献

膳食多不饱和脂肪酸对基因转录的调控

Dietary polyunsaturated fatty acid regulation of gene transcription.

作者信息

Clarke S D, Jump D B

机构信息

Department of Food Science and Human Nutrition, Colorado State University, Fort Collins 80523.

出版信息

Annu Rev Nutr. 1994;14:83-98. doi: 10.1146/annurev.nu.14.070194.000503.

Abstract

We have known for nearly 30 years that dietary polyenoic (n-6) and (n-3) fatty acids potentially inhibit hepatic fatty acid biosynthesis. The teleological explanation for this unique action of PUFAs resides in their ability to suppress the synthesis of (n-9) fatty acids. By inhibiting fatty acid biosynthesis, dietary PUFAs reduce the availability of substrate for delta 9 desaturase (7, 22, 34, 36) and in turn reduce the availability of (n-9) fatty acids for incorporation into plasma membranes. In this way, essential biological processes dependent on essential fatty acids (e.g. reproduction and trans-dermal water loss) continue to operate normally. Therefore, if essential fatty acid intake did not regulate (n-9) fatty acid synthesis, the survival of the organism would be threatened. During the past 20 years, we have gradually elucidated the cellular and molecular mechanisms by which dietary PUFAs modulate fatty acid biosynthesis and (n-9) fatty acid availability. Central to this mechanism has been our ability to determine that dietary PUFAs regulate the transcription of genes coding for lipogenic enzymes (12, 40). The potential mechanisms by which PUFAs govern gene transcription are numerous, and it is unlikely that any one mechanism can fully elucidate the nuclear actions of PUFA. The difficulty in providing a unifying hypothesis at this time stems from: (a) the many metabolic routes taken by PUFAs upon entering the hepatocyte (Figure 1); and (b) the lack of identity of a specific PUFA-regulated trans-acting factor. However, the studies described above indicate that macronutrients, like PUFA, are not only utilized as fuel and structural components of cells, but also serve as important mediators of gene expression (12, 14, 40). As regulators of gene expression, PUFAs (or metabolites) are thought to affect the activity of transcription factors, which in turn target key cis-linked elements associated with specific genes. Whether this targeting involves DNA-protein interaction or the interaction of PUFA-regulated factors is unclear. A better understanding of the nuclear actions of PUFA will clarify the role of these compounds in lipid metabolism and lead to a better understanding of the role of PUFAs in disease processes such as insulin-resistant diabetes and certain forms of cancer.

摘要

近30年来我们已经知道,膳食中的多烯(n-6)和(n-3)脂肪酸可能抑制肝脏脂肪酸的生物合成。对于多不饱和脂肪酸(PUFAs)这一独特作用的目的论解释在于它们抑制(n-9)脂肪酸合成的能力。通过抑制脂肪酸生物合成,膳食中的PUFAs降低了δ9去饱和酶的底物可用性(7, 22, 34, 36),进而减少了用于掺入质膜的(n-9)脂肪酸的可用性。通过这种方式,依赖于必需脂肪酸的重要生物学过程(如繁殖和经皮水分流失)继续正常运行。因此,如果必需脂肪酸的摄入不调节(n-9)脂肪酸的合成,生物体的生存将受到威胁。在过去20年里,我们逐渐阐明了膳食PUFAs调节脂肪酸生物合成和(n-9)脂肪酸可用性的细胞和分子机制。这一机制的核心在于我们能够确定膳食PUFAs调节编码脂肪生成酶的基因的转录(12, 40)。PUFAs调控基因转录的潜在机制众多,而且不太可能有任何一种机制能完全阐明PUFA的核作用。目前难以提供一个统一假设的原因在于:(a)PUFAs进入肝细胞后有许多代谢途径(图1);(b)缺乏特定的PUFA调节的反式作用因子的一致性。然而,上述研究表明,像PUFA这样的大量营养素不仅被用作细胞的燃料和结构成分,还作为基因表达的重要介质(12, 14, 40)。作为基因表达的调节因子,PUFAs(或其代谢产物)被认为会影响转录因子的活性,而转录因子反过来靶向与特定基因相关的关键顺式连接元件。这种靶向是涉及DNA-蛋白质相互作用还是PUFA调节因子的相互作用尚不清楚。对PUFA核作用的更好理解将阐明这些化合物在脂质代谢中的作用,并有助于更好地理解PUFAs在诸如胰岛素抵抗性糖尿病和某些形式癌症等疾病过程中的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验