Suppr超能文献

Regulation of endogenous dopamine release in amphibian retina by gamma-aminobutyric acid and glycine.

作者信息

Boatright J H, Rubim N M, Iuvone P M

机构信息

Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090.

出版信息

Vis Neurosci. 1994 Sep-Oct;11(5):1003-12. doi: 10.1017/s095252380000393x.

Abstract

Endogenous dopamine release in the retina of the African clawed frog (Xenopus laevis) increases in light and decreases in darkness. The roles of the inhibitory amino acid transmitters gamma-aminobutyric acid (GABA) and glycine in regulating this light/dark difference in dopamine release were explored in the present study. Exogenous GABA, the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, and the GABA-C receptor agonist cis-aminocrotonic acid (CACA) suppressed light-evoked dopamine overflow from eyecups. The effects of GABA-A and -B receptor agonists were selectively reversed by their respective receptor-specific antagonists, whereas the effect of CACA was reversed by the competitive GABA-A receptor antagonist bicuculline. The benzodiazepine diazepam enhanced the effect of muscimol on light-evoked dopamine release. Both GABA-A and -B receptor antagonists stimulated dopamine release in light or darkness. Bicuculline was more potent in light than in darkness. These data suggest that retinal dopaminergic neurons are inhibited by GABA-A and -B receptor activation in both light and darkness but that GABA-mediated inhibitory tone may be greater in darkness than in light. Exogenous glycine inhibited light-stimulated dopamine release in a concentration-dependent and strychnine-sensitive manner. However, strychnine alone did not increase dopamine release in light or darkness, nor did it augment bicuculline-stimulated release in darkness. Additionally, both strychnine and 7-chlorokynurenate, an antagonist of the strychnine-insensitive glycine-binding site of the N-methyl-D-aspartate subtype of glutamate receptor, suppressed light-evoked dopamine release. Thus, the role of endogenous glycine in the regulation of dopamine release remains unclear.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验