Srinivasan J, Hu S, Hrabal R, Zhu Y, Komives E A, Ni F
Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada.
Biochemistry. 1994 Nov 22;33(46):13553-60. doi: 10.1021/bi00250a007.
The EGF-like domains in human thrombomodulin interact with and change the specificity of thrombin from a procoagulant enzyme to an anticoagulant enzyme. Recent experiments identified the minimal thrombin-binding region of thrombomodulin as the most acidic loop of the fifth EGF-like domain with a sequence of E408CPEGYILDDGFI420CTDIDE. High-resolution NMR spectroscopy was employed to characterize the interaction of a des-Ile420 thrombomodulin peptide, Cys1(409)Pro2Glu3Gly4Tyr5Ile6- Leu7Asp8Asp9Gly10Phe11Cys12Thr13Asp14Ile15Asp16Glu17(426), with its target coagulation protein, thrombin. The disulfide-bonded peptide was found to be structured only upon binding, while neither the linear nor the cyclized peptide exhibited any structural preference free in solution. The thrombin-bound structure of the cyclic thrombomodulin peptide was determined by transferred nuclear Overhauser effects (transferred NOEs) and by distance geometry and Monte Carlo calculations. The thrombin-bound cyclic peptide assumes an overall conformation similar to those observed in the free but intact EGF molecules. There is a type II beta-turn involving residues Pro2-Tyr5, followed by an optimized antiparallel beta-sheet involving residues Gly4-Asp8 and residues Phe11-Ile15. The thrombomodulin peptide provides a potential thrombin-binding surface between residues Tyr5 and Phe11, which are brought close by a chain reversal within the central beta-sheet. Comparison of the thrombin-bound structure of the EGF-like subdomain with other thrombin-peptide complexes revealed that a common thrombin-binding surface can be organized by different secondary structure elements with entirely different peptide sequences. The thrombin-bound structure of the thrombomodulin peptide may serve as a basis to understand the regulatory functions of thrombomodulin and as a guide for the design of specific inhibitors for thrombin.
人凝血酶调节蛋白中的表皮生长因子(EGF)样结构域与凝血酶相互作用,并将凝血酶的特异性从促凝酶转变为抗凝酶。最近的实验确定,凝血酶调节蛋白的最小凝血酶结合区域是第五个EGF样结构域中酸性最强的环,其序列为E408CPEGYILDDGFI420CTDIDE。采用高分辨率核磁共振光谱来表征去Ile420凝血酶调节蛋白肽Cys1(409)Pro2Glu3Gly4Tyr5Ile6 - Leu7Asp8Asp9Gly10Phe11Cys12Thr13Asp14Ile15Asp16Glu17(426)与其靶标凝血蛋白凝血酶之间的相互作用。发现该二硫键连接的肽仅在结合时形成结构,而线性肽和环化肽在溶液中均未表现出任何结构偏好。通过转移核Overhauser效应(转移NOE)以及距离几何和蒙特卡罗计算确定了环化凝血酶调节蛋白肽与凝血酶结合后的结构。与凝血酶结合的环化肽呈现出与游离但完整的EGF分子中观察到的总体构象相似的构象。存在一个涉及Pro2 - Tyr5残基的II型β-转角,随后是一个优化的反平行β-折叠,涉及Gly4 - Asp8残基和Phe11 - Ile15残基。凝血酶调节蛋白肽在Tyr5和Phe11残基之间提供了一个潜在的凝血酶结合表面,它们通过中央β-折叠内的链反转而靠近。将EGF样亚结构域与凝血酶结合后的结构与其他凝血酶-肽复合物进行比较发现,不同的二级结构元件和完全不同的肽序列可以构建出一个共同的凝血酶结合表面。凝血酶调节蛋白肽与凝血酶结合后的结构可作为理解凝血酶调节蛋白调节功能的基础,并为设计凝血酶特异性抑制剂提供指导。