Suppr超能文献

ATP结合会导致大肠杆菌F1ATP酶γ亚基发生构象变化,这种变化在键断裂时会逆转。

ATP binding causes a conformational change in the gamma subunit of the Escherichia coli F1ATPase which is reversed on bond cleavage.

作者信息

Turina P, Capaldi R A

机构信息

Institute of Molecular Biology, University of Oregon, Eugene 97403.

出版信息

Biochemistry. 1994 Nov 29;33(47):14275-80. doi: 10.1021/bi00251a040.

Abstract

ATP hydrolysis by the Escherichia coli F1 ATPase (ECF1) induces a conformational change in the gamma subunit. This change can be monitored by fluorescence changes in N-[4-[7-(diethylamino)-4-methyl]coumarin-3-yl)]maleimide (CM) bound at a cysteine introduced by site-directed mutagenesis into the gamma subunit at position 106 [Turina, P., & Capaldi, R. A. (1994) J. Biol. Chem. 269, 13465-13471]. In studies reported here, the magnitude of the fluorescence change has been determined with the noncleavable nucleotide analogue AMP-PNP and by rapid measurements using the slowly cleavable ATP gamma S. The data indicate that maximal fluorescence change occurs with binding of 1 mol of nucleotide triphosphate per mole of ECF1. During unisite catalysis, ATP binding causes a fluorescence enhancement from CM bound at position 106, which is then followed by fluorescence quenching. The kinetics of these fluorescence changes have been measured using both ATP and ATP gamma S as substrate. With ATP gamma S, these kinetics can be simulated using rate constants similar to those for ATP except for an approximately 30-fold slower rate of the bond cleavage and resynthesis steps, i.e., k+2 and k-2. The observed rates and amplitudes of the fluorescence changes on hydrolysis of ATP and ATP gamma S were analyzed by simulations in which the bond cleavage or the Pi release step was responsible for fluorescence quenching. The results indicate that ATP or ATP gamma S binding causes the fluorescence enhancement of CM bound to the gamma subunit and that this conformational change is reversed upon bond cleavage to yield ADP.Pi or ADP.PiS in catalytic sites.

摘要

大肠杆菌F1 ATP酶(ECF1)催化ATP水解会诱导γ亚基发生构象变化。这种变化可通过与N-[4-[7-(二乙氨基)-4-甲基]香豆素-3-基]马来酰亚胺(CM)结合的荧光变化来监测,CM通过定点诱变与γ亚基第106位引入的半胱氨酸结合[图里纳,P.,& 卡帕尔迪,R. A.(1994年)《生物化学杂志》269卷,13465 - 13471页]。在本文报道的研究中,荧光变化的幅度已通过不可裂解的核苷酸类似物AMP - PNP以及使用缓慢裂解的ATPγS进行快速测量来确定。数据表明,每摩尔ECF1结合1摩尔三磷酸核苷酸时会发生最大荧光变化。在单部位催化过程中,ATP结合会使与第106位结合的CM荧光增强,随后荧光猝灭。已使用ATP和ATPγS作为底物测量了这些荧光变化的动力学。对于ATPγS,这些动力学可以使用与ATP相似的速率常数进行模拟,只是键裂解和重新合成步骤(即k + 2和k - 2)的速率大约慢30倍。通过模拟分析了ATP和ATPγS水解时观察到的荧光变化速率和幅度,其中键裂解或Pi释放步骤导致荧光猝灭。结果表明,ATP或ATPγS结合会使与γ亚基结合的CM荧光增强,并且这种构象变化在键裂解后逆转,在催化位点产生ADP·Pi或ADP·PiS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验