Suppr超能文献

小波变换作为一种用于生物信号识别的工具。

The wavelet transform as a tool for recognition of biosignals.

作者信息

Gyaw T A, Ray S R

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign 61801.

出版信息

Biomed Sci Instrum. 1994;30:63-8.

PMID:7948651
Abstract

The use of the wavelet transform as a signal analysis tool has been demonstrated by its successful application to the study of various signals. The first step in addressing pattern recognition problems is to define a representation that can be used for extracting the information content of signals. The sharp variation points of a signal amplitude are among the meaningful characterizations of the signal. The wavelet transform of the signal is found to be translation variant which makes it difficult for direct application in pattern recognition. However, the zero-crossings of a wavelet transform employing a particular class of wavelets can provide the translation invariant locations of the signal variation points. A zero-crossing representation augmented by the measure of the structure between the two consecutive zero-crossings has been studied by Stephane Mallat. On the basis of this representation, we demonstrate recognition of segments of biosignals embedded in streams of signals. The feasibility of employing zero-crossings of a wavelet transform as a tool in searching for a particular pattern class in the library of biosignals is explored.

摘要

小波变换作为一种信号分析工具,已通过其在各种信号研究中的成功应用得到证明。解决模式识别问题的第一步是定义一种可用于提取信号信息内容的表示方法。信号幅度的急剧变化点是信号有意义的特征之一。发现信号的小波变换是平移可变的,这使得它难以直接应用于模式识别。然而,采用特定类小波的小波变换的过零点可以提供信号变化点的平移不变位置。斯特凡·马拉特研究了一种通过两个连续过零点之间的结构度量增强的过零点表示方法。基于这种表示方法,我们展示了对嵌入在信号流中的生物信号片段的识别。探讨了将小波变换的过零点用作在生物信号库中搜索特定模式类的工具的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验