Begg G E, Ralston G B, Morris M B
Department of Biochemistry, University of Sydney, NSW, Australia.
Biophys Chem. 1994 Sep;52(1):63-73. doi: 10.1016/0301-4622(94)00066-2.
The effect of added NaCl (0-150 mM) and temperature (6-65 degrees C) on the conformation of erythrocyte spectrin was investigated using 400 MHz 1H NMR. The relatively narrow resonances (20-40 Hz linewidth) in the spectra arising from protons in regions of the molecule undergoing rapid motions were selectively detected using either the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence without water presaturation or a simple pi/2 pulse sequence with water presaturation. The T2 relaxation of these protons was not influenced by changes in solution conditions (0-150 mM NaCl, 6-37 degrees C) indicating that their motions were independent of the overall shape of the molecule. Significant increases in the areas of the aliphatic peaks for spectrin samples at fixed salt concentrations occurred as the temperature was raised from 6 to 37 degrees C. The increases were independent of the state of polymerization of spectrin and were greater in the absence of added salt above 25 degrees C. The changes reflect increasing numbers of mobile residues, probably due to partial unfolding of spectrin's repeated structural unit. At temperatures above 37 degrees C, sharp increases in the areas of the spectral envelopes reflect cooperative unfolding of spectrin. Comparison with results previously obtained in this laboratory using CD and ORD indicate that at least part of the lost structure is alpha-helical.