Zeviani M, Taroni F
Divisione di Biochimica e Genetica, Instituto Nazionale Neurologica Carlo Besta, Milano, Italy.
Baillieres Clin Neurol. 1994 Aug;3(2):315-34.
Mitochondrial diseases are heterogeneous and characterized by a primary defect of the mitochondrial energy output. Genetic defects of mitochondrial energy enzymes may be due to either nuclear DNA gene mutations or mitochondrial DNA (mtDNA) mutations. Among hereditary defects of nuclear-encoded mitochondrial enzymes, carnitine palmitoyltransferase II (CPT-II) deficiency and pyruvate dehydrogenase complex (PDHC) deficiency are of major interest to the neurologist. Several mutations in the CPT-II gene as well as in the X-linked E1 alpha subunit gene of PDHC have been reported and associated with different clinical phenotypes. mtDNA-related syndromes include mitochondrial encephalomyopathies (e.g. MELAS, MERRF, NARP, MIMyCa, etc.), 'pure' encephalopathies (e.g. LHON) and a few syndromes involving only non-neurological systems (e.g. Pearson's pancreas-bone marrow syndrome or diabetes mellitus). Three kinds of molecular lesions have been identified in mtDNA-related disorders: point mutations of protein-encoding mtDNA genes (mit- mutations), point mutations of mtDNA-tRNA genes (syn- mutations) and large-scale rearrangements of mtDNA (rho- mutations). Point mutations (mit- and syn+) are usually maternally inherited, while single large-scale mtDNA rearrangements are usually sporadic. Furthermore, mendelian traits leading to either qualitative or quantitative abnormalities of mtDNA (i.e. multiple mtDNA deletions and tissue-specific mtDNA depletion, respectively) are the first examples of genetic dysfunction of nuclear-mitochondrial communication. In most cases, the molecular detection of the known defects of mtDNA can be carried out by non-invasive techniques, thus making it an easy and relatively inexpensive procedure in the differential diagnosis of the mitochondrial disorders, a rapidly expanding area of clinical neurology.
线粒体疾病具有异质性,其特征是线粒体能量输出存在原发性缺陷。线粒体能量酶的遗传缺陷可能是由于核DNA基因突变或线粒体DNA(mtDNA)突变。在核编码线粒体酶的遗传性缺陷中,肉碱棕榈酰转移酶II(CPT-II)缺乏症和丙酮酸脱氢酶复合物(PDHC)缺乏症是神经科医生主要关注的问题。已经报道了CPT-II基因以及PDHC的X连锁E1α亚基基因中的几种突变,并与不同的临床表型相关。与mtDNA相关的综合征包括线粒体脑肌病(如MELAS、MERRF、NARP、MIMyCa等)、“纯”脑病(如LHON)以及一些仅涉及非神经系统的综合征(如Pearson胰腺-骨髓综合征或糖尿病)。在与mtDNA相关的疾病中已鉴定出三种分子病变:编码蛋白质的mtDNA基因的点突变(mit-突变)、mtDNA-tRNA基因的点突变(syn-突变)和mtDNA的大规模重排(rho-突变)。点突变(mit-和syn+)通常是母系遗传的,而单个大规模mtDNA重排通常是散发性的。此外,导致mtDNA定性或定量异常的孟德尔性状(即分别为多个mtDNA缺失和组织特异性mtDNA耗竭)是核-线粒体通讯遗传功能障碍的首个例子。在大多数情况下,mtDNA已知缺陷的分子检测可以通过非侵入性技术进行,因此使其成为线粒体疾病鉴别诊断中一种简单且相对便宜的方法,线粒体疾病是临床神经学中一个迅速发展的领域。