He D Y, Yu L, Yu C A
Department of Biochemistry, Oklahoma State University, Stillwater 74078.
J Biol Chem. 1994 Nov 11;269(45):27885-8.
For the investigation of the protein-ubiquinone interaction in the succinate-cytochrome c reductase region of the bovine heart mitochondrial electron transport chain, a series of 5-alkyl-substituted ubiquinone derivatives (5-R-Q0C10) were synthesized and characterized. Syntheses of 5-ethyl-Q0C10, 5-propyl-Q0C10, 5-isopropyl-Q0C10, and 5-butyl-Q0C10, were archived through radical coupling reactions between 2,3-dimethoxy-6-decyl-1,4-benzoquinone (5-H-Q0C10) and the corresponding alkanoyl peroxides. Although the spectral and redox properties of 5-R-Q0C10 are very similar to those of 5-methyl-2,3 dimethoxy-6-decyl-1,4-benzoquinone, the biological electron transfer efficiencies of these derivatives differ significantly. The reducibility of these derivatives by succinate, as measured with succinate-Q reductase and the oxidizability as measured by ubiquinol-cytochrome c reductase, decreased as the size of the substituents increased. 5-Ethyl-Q0C10 has about 50% of the activity of 5-methyl-2,3-dimethoxy-6-decyl-1,4-benzoquinone, whereas molecules with 5-alkyl groups of three or more carbon atoms are virtually inactive as electron acceptors for succinate-Q reductase. Reduced form of the derivative with no substituent at the 5-position, 5-H derivative is more effectively oxidized by ubiquinol-cytochrome c reductase than does the 5-methyl derivative, the native form. The oxidation of 5-H derivative is in a concentration-dependent manner at low concentrations but exhibits a substrate inhibition at higher concentrations. No such substrate inhibition is observed when other 5-substituted Q derivatives are used. 5-H derivative is a better electron acceptor for succinate-Q reductase than any other Q derivatives and does not show substrate inhibition, even at high concentrations. These results indicate that the binding environment of the benzoquinone ring in succinate-Q reductase is more specific than that of ubiquinol-cytochrome c reductase.
为了研究牛心线粒体电子传递链琥珀酸 - 细胞色素c还原酶区域中的蛋白质 - 泛醌相互作用,合成并表征了一系列5 - 烷基取代的泛醌衍生物(5 - R - Q0C10)。通过2,3 - 二甲氧基 - 6 - 癸基 - 1,4 - 苯醌(5 - H - Q0C10)与相应的烷酰过氧化物之间的自由基偶联反应,完成了5 - 乙基 - Q0C10、5 - 丙基 - Q0C10、5 - 异丙基 - Q0C10和5 - 丁基 - Q0C10的合成。尽管5 - R - Q0C10的光谱和氧化还原性质与5 - 甲基 - 2,3 - 二甲氧基 - 6 - 癸基 - 1,4 - 苯醌非常相似,但这些衍生物的生物电子转移效率却有显著差异。用琥珀酸 - Q还原酶测定,这些衍生物被琥珀酸还原的能力,以及用泛醇 - 细胞色素c还原酶测定的氧化能力,都随着取代基尺寸的增加而降低。5 - 乙基 - Q0C10的活性约为5 - 甲基 - 2,3 - 二甲氧基 - 6 - 癸基 - 1,4 - 苯醌的50%,而具有三个或更多碳原子的5 - 烷基基团的分子作为琥珀酸 - Q还原酶的电子受体实际上是无活性的。在5位没有取代基的衍生物的还原形式,即5 - H衍生物,比天然形式的5 - 甲基衍生物更有效地被泛醇 - 细胞色素c还原酶氧化。5 - H衍生物在低浓度下的氧化呈浓度依赖性,但在较高浓度下表现出底物抑制。当使用其他5 - 取代的Q衍生物时,未观察到这种底物抑制。5 - H衍生物作为琥珀酸 - Q还原酶的电子受体比任何其他Q衍生物都更好,并且即使在高浓度下也不显示底物抑制。这些结果表明,琥珀酸 - Q还原酶中苯醌环的结合环境比泛醇 - 细胞色素c还原酶的更具特异性。