Mathes C, Thompson S H
Department of Biological Sciences, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950.
J Gen Physiol. 1994 Jul;104(1):107-21. doi: 10.1085/jgp.104.1.107.
The activation of muscarinic receptors in N1E-115 neuroblastoma cells elicits a voltage-independent calcium current. The current turns on slowly, reaches its maximum value approximately 45 s after applying the agonist, is sustained as long as agonist is present, and recovers by one half in approximately 10 s after washing the agonist away. The current density is 0.11 +/- 0.08 pA/pF (mean +/- SD; n = 12). It is absent in zero-Ca++ saline and reduced by Mn++ and Ba++. The I(V) curve characterizing the current has an extrapolated reversal potential > +40 mV. The calcium current is observed in cells heavily loaded with BAPTA indicating that the calcium entry pathway is not directly gated by calcium. In fura-2 experiments, we find that muscarinic activation causes an elevation of intracellular Ca++ that is due to both intracellular calcium release and calcium influx. The component of the signal that requires external Ca++ has the same time course as the receptor operated calcium current. Calcium influx measured in this way elevates (Ca++)i by 89 +/- 41 nM (n = 7). Thapsigargin, an inhibitor of Ca++/ATPase associated with the endoplasmic reticulum (ER), activates a calcium current with similar properties. The current density is 0.22 +/- 0.20 pA/pF (n = 6). Thapsigargin activated current is reduced by Mn++ and Ba++ and increased by elevated external Ca++. Calcium influx activated by thapsigargin elevates (Ca++)i by 82 +/- 35 nM. The Ca++ currents due to agonist and due to thapsigargin do not sum, indicating that these procedures activate the same process. Carbachol and thapsigargin both cause calcium release from internal stores and the calcium current bears strong similarity to calcium-release-activated calcium currents in nonexcitable cells (Hoth, M., and R. Penner. 1993. Journal of Physiology. 465:359-386; Zweifach, A., and R. S. Lewis, 1993. Proceedings of the National Academy of Sciences, USA. 90:6295-6299).
毒蕈碱受体在N1E - 115神经母细胞瘤细胞中的激活引发了一种电压非依赖性钙电流。该电流开启缓慢,在施加激动剂后约45秒达到最大值,只要激动剂存在就持续存在,并且在洗去激动剂后约10秒内恢复一半。电流密度为0.11±0.08 pA/pF(平均值±标准差;n = 12)。在无钙盐溶液中该电流不存在,并且会被Mn++和Ba++降低。表征该电流的I(V)曲线具有外推反转电位> +40 mV。在大量加载BAPTA的细胞中观察到钙电流,这表明钙进入途径不是直接由钙门控的。在fura - 2实验中,我们发现毒蕈碱激活会导致细胞内Ca++升高,这是由于细胞内钙释放和钙内流共同作用的结果。需要外部Ca++的信号成分与受体操纵的钙电流具有相同的时间进程。以这种方式测量的钙内流使(Ca++)i升高89±41 nM(n = 7)。毒胡萝卜素是一种与内质网(ER)相关的Ca++/ATP酶抑制剂,它激活一种具有相似特性的钙电流。电流密度为0.22±0.20 pA/pF(n = 6)。毒胡萝卜素激活的电流会被Mn++和Ba++降低,并因外部Ca++升高而增加。毒胡萝卜素激活的钙内流使(Ca++)i升高82±35 nM。激动剂和毒胡萝卜素引起的Ca++电流不会叠加,这表明这些过程激活了相同的机制。卡巴胆碱和毒胡萝卜素都会导致内部储存的钙释放,并且该钙电流与非兴奋性细胞中的钙释放激活钙电流有很强的相似性(霍斯,M.,和R.彭纳。1993年。《生理学杂志》。465:359 - 386;茨魏法赫,A.,和R. S.刘易斯,1993年。《美国国家科学院院刊》。90:6295 - 6299)。