Suppr超能文献

磷酸烯醇丙酮酸在大肠杆菌同时摄取果糖和2-脱氧葡萄糖过程中的作用

The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli.

作者信息

Kornberg H, Lambourne L T

机构信息

Department of Biochemistry, University of Cambridge, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11080-3. doi: 10.1073/pnas.91.23.11080.

Abstract

Nonmetabolizable glucose analogs inhibit the growth of Escherichia coli on a wide variety of carbon sources. This phenomenon was investigated with particular reference to the effect of 2-deoxyglucose (2DG) on growth on fructose as sole carbon source. When the inhibitor is supplied in sufficiently low concentrations, the initial arrest of growth is overcome; this relief of inhibition is aided by means that increase the availability of phosphoenolpyruvate (PEP) to the growing cells, such as the use of L-aspartate instead of ammonium chloride as sole nitrogen source for growth, and the introduction of the pps+ allele into a pps- strain. Studies with [14C]2DG showed that the analog or its 6-phosphate as such did not inhibit growth but that 2DG exerted its effect by competing for intracellular PEP and lowering its concentration below that needed to sustain growth. Direct measurements of the PEP-dependent phosphorylation of 2DG and of fructose by permeabilized E. coli showed that the apparent Km for PEP was nearly 7 times higher for 2DG that it was for fructose, although the apparent Vmax for 2DG was nearly 3 times that for fructose; this explains the ability of cells to overcome the inhibition by low, but not by high, concentrations of 2DG.

摘要

不可代谢的葡萄糖类似物会抑制大肠杆菌在多种碳源上的生长。针对2-脱氧葡萄糖(2DG)对以果糖作为唯一碳源时生长的影响,对这一现象进行了研究。当以足够低的浓度提供抑制剂时,生长的初始停滞会被克服;增加生长细胞中磷酸烯醇丙酮酸(PEP)可用性的方法有助于缓解这种抑制作用,例如使用L-天冬氨酸而非氯化铵作为生长的唯一氮源,以及将pps +等位基因导入pps-菌株。用[14C]2DG进行的研究表明,该类似物或其6-磷酸本身并不抑制生长,但2DG通过竞争细胞内的PEP并将其浓度降低到维持生长所需浓度以下来发挥作用。对透化的大肠杆菌中2DG和果糖的PEP依赖性磷酸化的直接测量表明,2DG的PEP表观Km值几乎是果糖的7倍,尽管2DG的表观Vmax值几乎是果糖的3倍;这解释了细胞能够通过低浓度而非高浓度的2DG来克服抑制作用的能力。

相似文献

1
The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli.
Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11080-3. doi: 10.1073/pnas.91.23.11080.
3
Phosphoenolpyruvate-dependent glucose phosphotransferase activity in Streptococcus mitis ATCC 903.
Scand J Dent Res. 1980 Aug;88(4):316-22. doi: 10.1111/j.1600-0722.1980.tb01233.x.
7
Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.
Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1808-12. doi: 10.1073/pnas.97.4.1808.
10
Uptake of fructose by the sorbitol phosphotransferase of Escherichia coli K12.
J Gen Microbiol. 1976 Oct;96(2):383-91. doi: 10.1099/00221287-96-2-383.

引用本文的文献

1
Removing carbon catabolite repression in DSM 2542.
Front Microbiol. 2022 Oct 20;13:985465. doi: 10.3389/fmicb.2022.985465. eCollection 2022.
3
Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism.
Nucleic Acids Res. 2018 Mar 16;46(5):2585-2599. doi: 10.1093/nar/gkx1286.
4
Stringent Response Regulators Contribute to Recovery from Glucose Phosphate Stress in Escherichia coli.
Appl Environ Microbiol. 2017 Dec 1;83(24). doi: 10.1128/AEM.01636-17. Print 2017 Dec 15.
5
Tricking Arthrinium malaysianum into Producing Industrially Important Enzymes Under 2-Deoxy D-Glucose Treatment.
Front Microbiol. 2016 May 13;7:596. doi: 10.3389/fmicb.2016.00596. eCollection 2016.
6
Carbon Catabolite Repression and the Related Genes of ccpA, ptsH and hprK in Thermoanaerobacterium aotearoense.
PLoS One. 2015 Nov 5;10(11):e0142121. doi: 10.1371/journal.pone.0142121. eCollection 2015.
7
Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress.
Mol Microbiol. 2016 Jan;99(2):254-73. doi: 10.1111/mmi.13230. Epub 2015 Oct 26.
8
Depletion of glycolytic intermediates plays a key role in glucose-phosphate stress in Escherichia coli.
J Bacteriol. 2013 Nov;195(21):4816-25. doi: 10.1128/JB.00705-13. Epub 2013 Aug 30.
9
Carbon catabolite repression in Thermoanaerobacterium saccharolyticum.
Biotechnol Biofuels. 2012 Nov 26;5(1):85. doi: 10.1186/1754-6834-5-85.

本文引用的文献

1
PHOSPHATE BOUND TO HISTIDINE IN A PROTEIN AS AN INTERMEDIATE IN A NOVEL PHOSPHO-TRANSFERASE SYSTEM.
Proc Natl Acad Sci U S A. 1964 Oct;52(4):1067-74. doi: 10.1073/pnas.52.4.1067.
2
Genetic control of glucose uptake by Escherichia coli.
FEBS Lett. 1972 Feb 15;20(3):270-272. doi: 10.1016/0014-5793(72)80084-x.
3
Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.
Microbiol Rev. 1993 Sep;57(3):543-94. doi: 10.1128/mr.57.3.543-594.1993.
5
Catabolite inhibition: a general phenomenon in the control of carbohydrate utilization.
J Bacteriol. 1969 Nov;100(2):902-13. doi: 10.1128/jb.100.2.902-913.1969.
6
Fine control of sugar uptake by Escherichia coli.
Symp Soc Exp Biol. 1973;27:175-93.
8
Location of a gene specifying phosphopyruvate synthase activity on the genome of Escherichia coli, K12.
Proc R Soc Lond B Biol Sci. 1967 Sep 12;168(1012):281-92. doi: 10.1098/rspb.1967.0066.
9
The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli.
Proc R Soc Lond B Biol Sci. 1967 Sep 12;168(1012):263-80. doi: 10.1098/rspb.1967.0065.
10
The anaplerotic fixation of carbon dioxide by Escherichia coli.
Proc R Soc Lond B Biol Sci. 1966 Aug 16;165(999):179-88. doi: 10.1098/rspb.1966.0063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验