Suppr超能文献

有丝分裂计数在乳腺癌预后评估及分级中的应用。方法评估研究。

Use of the mitotic counts for the prognosis and grading of breast cancer. Method evaluation study.

作者信息

Kujari H P, Collan Y U, Atkin N B

机构信息

Department of Pathology, University of Turku, Finland.

出版信息

Pathol Res Pract. 1994 Jun;190(6):593-9. doi: 10.1016/S0344-0338(11)80397-3.

Abstract

Reproducibility of the volume fraction-corrected mitotic index (M/VV index) was studied in 144 unselected breast cancer specimens. The influence on decision making of variation in determining the index was also analysed. In the complete series of specimens the correlation between two observers, one subjectively estimating the epithelial fraction of tumor epithelium and the other using point-counting (10 x 10 ocular grid), was good (Pearson's r = 0.82, p < 0.001, 95% CI 0.70-0.92). A subset of 30 specimens was used to evaluate the grading efficiency (GE) of the M/VV index method. The mean grading efficiency as estimated from this subset varied between 90% and 93%. The average minimum GE value was 82.8% (SD = 3.4%). The findings suggest that when the M/VV index method is used, the grading is correct on average in 90% or more of the cases, but dependent on the cutoff point. The over-all grading efficiency of the M/VV index method was comparable to that obtained from published S-phase fraction data on breast cancer specimens from three independed laboratories. We conclude that the M/VV index in breast cancer analysis is a sufficiently reproducible method in mitosis counting, and that it can be used with subjective or point count estimation of the area fraction of neoplastic epithelium.

摘要

在144份未经筛选的乳腺癌标本中研究了体积分数校正有丝分裂指数(M/VV指数)的可重复性。还分析了指数测定中的变异对决策的影响。在完整的标本系列中,两位观察者之间的相关性良好,一位主观估计肿瘤上皮的上皮分数,另一位使用点计数法(10×10目镜网格)(Pearson相关系数r = 0.82,p < 0.001,95%置信区间0.70 - 0.92)。使用30份标本的子集来评估M/VV指数法的分级效率(GE)。从该子集中估计的平均分级效率在90%至93%之间变化。平均最低GE值为82.8%(标准差 = 3.4%)。研究结果表明,当使用M/VV指数法时,分级在90%或更多的病例中平均是正确的,但取决于截断点。M/VV指数法的总体分级效率与来自三个独立实验室的已发表的乳腺癌标本S期分数数据所获得的分级效率相当。我们得出结论,在乳腺癌分析中,M/VV指数在有丝分裂计数方面是一种具有足够可重复性的方法,并且它可以用于主观或点计数估计肿瘤上皮的面积分数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验