Suppr超能文献

Regulation of murine Max (Myn) parallels the regulation of c-Myc in differentiating murine erythroleukemia cells.

作者信息

Dunn B K, Cogliati T, Cultraro C M, Bar-Ner M, Segal S

机构信息

NCI-Navy Medical Oncology Branch, NIH, Bethesda, Maryland 20889.

出版信息

Cell Growth Differ. 1994 Aug;5(8):847-54.

PMID:7986749
Abstract

Max is a basic region-helix-loop-helix-leucine zipper protein that consists of two major isoforms, p22 (long form, Max-L) and p21 (short form, Max-S). These proteins are encoded by two [the 1.9- and the predominant 2.3-kilobase (kb) forms] of the five alternatively spliced max mRNA species. We now demonstrate that N,N'-hexamethylene bisacetamide-mediated differentiation of murine erythroleukemia cells leads to a pattern of biphasic down-regulation of the 1.9- and the 2.3-kb myn (murine max) mRNAs that closely parallels that which occurs for myc mRNA. In contrast, the p22/Myn-L and p21/Myn-S protein isoforms down-regulate in monophasic fashion. Unlike the short-lived myc mRNA, the myn message is quite stable. However, its half-life of 3-6 h is still consistent with the biphasic down-regulation that accompanies differentiation. Furthermore, unlike myc, the overexpression of which prevents differentiation, elevated max levels merely delay differentiation. Coincident with this is a delay in the second decline of c-myc mRNA. In N,N'-hexamethylene bisacetamide-induced cells blocked from differentiating by overexpression of c-, N- or L-myc, myn mRNA expression is constitutive. These findings suggest that myn may also be involved in differentiation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验