Andreu J M, Díaz J F, Gil R, de Pereda J M, García de Lacoba M, Peyrot V, Briand C, Towns-Andrews E, Bordas J
Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
J Biol Chem. 1994 Dec 16;269(50):31785-92.
The synchrotron x-ray solution scattering profiles of microtubules assembled from purified GDP- or GTP-tubulin with the antitumor drug docetaxel (Taxotere) are consistent with identical non-globular alpha and beta-tubulin monomers ordered within the known surface lattice of microtubules, with a center to center lateral spacing of 5.7 +/- 0.1 nm. The higher angle part of the scattering profile, and therefore the substructure of the microtubule wall is identical in Taxotere- and Taxol-induced microtubules, to the resolution of the measurements. However, Taxotere-induced microtubules have a mean diameter of 24.2 +/- 0.4 nm, which is 1.12 +/- 0.01 times larger than that of paclitaxel (Taxol) induced microtubules. The population of Taxotere microtubules has on average 13.4 protofilaments, which is similar to control microtubules assembled with glycerol but is in marked contrast with Taxol-induced microtubules, which have on average 12 protofilaments under identical solution conditions. Model populations of Taxotere and Taxol microtubules with the distributions of protofilament numbers determined by electron microscopy reproduce the positions and approximate intensities of the experimental x-ray scattering data. Comparison of the structures and activities of both taxoids strongly suggests that the change of the more frequent lateral bond angle between tubulin molecules from 152.3 degrees (13-protofilament microtubules) to 150 degrees (12-protofilament microtubules) is linked to the binding of the side chain of Taxol. Optimal microtubule formation is obtained with unitary Taxotere to tubulin heterodimer ratio; however, ligand molecules in excess over tubulin dimers cause a loss of cylindrical scattering features, consistent with microtubule opening. The results are compatible with the observed biochemical and thermodynamic properties of this ligand-induced microtubule assembly system and also with the simple working hypothesis that taxoids would bind between adjacent microtubule protofilaments.
由纯化的GDP - 微管蛋白或GTP - 微管蛋白与抗肿瘤药物多西他赛(泰索帝)组装而成的微管的同步加速器X射线溶液散射图谱,与在微管已知表面晶格内排列的相同非球状α和β - 微管蛋白单体一致,中心到中心的横向间距为5.7±0.1纳米。在测量分辨率范围内,多西他赛和紫杉醇诱导的微管散射图谱的高角度部分以及微管壁的亚结构是相同的。然而,多西他赛诱导的微管平均直径为24.2±0.4纳米,比紫杉醇诱导的微管平均直径大1.12±0.01倍。多西他赛微管群体平均有13.4条原纤维,这与用甘油组装的对照微管相似,但与紫杉醇诱导的微管形成显著对比,在相同溶液条件下,紫杉醇诱导的微管平均有12条原纤维。通过电子显微镜确定原纤维数量分布的多西他赛和紫杉醇微管模型群体,再现了实验X射线散射数据的位置和近似强度。两种紫杉烷类化合物的结构和活性比较强烈表明,微管蛋白分子之间更频繁的横向键角从152.3度(13条原纤维微管)变为150度(12条原纤维微管)与紫杉醇侧链的结合有关。以单一的多西他赛与微管蛋白异二聚体比例可获得最佳微管形成;然而,配体分子过量超过微管蛋白二聚体会导致圆柱散射特征丧失,这与微管开口一致。这些结果与该配体诱导的微管组装系统观察到的生化和热力学性质相符,也与紫杉烷类化合物会结合在相邻微管原纤维之间的简单工作假设相符。