Suppr超能文献

厌氧超氧化物歧化酶合成在大肠杆菌进入需氧生境时促进其生长中的重要性。

Importance of anaerobic superoxide dismutase synthesis in facilitating outgrowth of Escherichia coli upon entry into an aerobic habitat.

作者信息

Kargalioglu Y, Imlay J A

机构信息

Department of Microbiology, University of Illinois, Urbana 61801.

出版信息

J Bacteriol. 1994 Dec;176(24):7653-8. doi: 10.1128/jb.176.24.7653-7658.1994.

Abstract

The manganese-containing isozyme of superoxide dismutase (MnSOD) is synthesized by Escherichia coli only during aerobiosis, in accordance with the fact that superoxide can be formed only in aerobic environments. In contrast, E. coli continues to synthesize the iron-containing isozyme (FeSOD) even in the absence of oxygen. A strain devoid of FeSOD exhibited no deficits during either anaerobic or continuously aerobic growth, but its growth lagged for 2 h during the transition from anaerobiosis to aerobiosis. Complementation of this defect with heterologous SODs established that anaerobic SOD synthesis per se is necessary to permit a smooth transition to aerobiosis. The growth deficit was eliminated by supplementation of the medium with branched-chain amino acids, indicating that the growth interruption was due to the established sensitivity of dihydroxyacid dehydratase to endogenous superoxide. Components of the anaerobic respiratory chain rapidly generated superoxide when exposed to oxygen in vitro, suggesting that this transition may be a period of acute oxidative stress. These results show that facultative bacteria must preemptively synthesize SOD during anaerobiosis in preparation for reaeration. The data suggest that evolution has chosen FeSOD for this function because of the relative availability of iron, in comparison to manganese, during anaerobiosis.

摘要

超氧化物歧化酶的含锰同工酶(MnSOD)仅在需氧条件下由大肠杆菌合成,这与超氧化物仅能在有氧环境中形成的事实相符。相比之下,即使在无氧条件下,大肠杆菌仍会继续合成含铁同工酶(FeSOD)。一株缺乏FeSOD的菌株在厌氧或持续有氧生长过程中均未表现出缺陷,但其在从厌氧状态转变为需氧状态的过程中生长滞后了2小时。用异源超氧化物歧化酶对这一缺陷进行互补实验表明,厌氧状态下超氧化物歧化酶的合成本身对于顺利转变为需氧状态是必要的。通过在培养基中添加支链氨基酸消除了生长缺陷,这表明生长中断是由于二羟基酸脱水酶对内源性超氧化物已确定的敏感性所致。厌氧呼吸链的成分在体外暴露于氧气时会迅速产生超氧化物,这表明这种转变可能是一个急性氧化应激期。这些结果表明,兼性细菌必须在厌氧状态下预先合成超氧化物歧化酶,为再曝气做准备。数据表明,进化选择FeSOD来执行这一功能是因为在厌氧状态下,与锰相比,铁的相对可利用性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b4/197223/2a55c1670f49/jbacter00042-0256-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验